1
|
Tang Q, Xu D, Lenzen B, Brachmann A, Yapa MM, Doroodian P, Schmitz-Linneweber C, Masuda T, Hua Z, Leister D, Kleine T. GENOMES UNCOUPLED PROTEIN1 binds to plastid RNAs and promotes their maturation. PLANT COMMUNICATIONS 2024; 5:101069. [PMID: 39169625 PMCID: PMC11671767 DOI: 10.1016/j.xplc.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Plastid biogenesis and the coordination of plastid and nuclear genome expression through anterograde and retrograde signaling are essential for plant development. GENOMES UNCOUPLED1 (GUN1) plays a central role in retrograde signaling during early plant development. The putative function of GUN1 has been extensively studied, but its molecular function remains controversial. Here, we evaluate published transcriptome data and generate our own data from gun1 mutants grown under signaling-relevant conditions to show that editing and splicing are not relevant for GUN1-dependent retrograde signaling. Our study of the plastid (post)transcriptome of gun1 seedlings with white and pale cotyledons demonstrates that GUN1 deficiency significantly alters the entire plastid transcriptome. By combining this result with a pentatricopeptide repeat code-based prediction and experimental validation by RNA immunoprecipitation experiments, we identified several putative targets of GUN1, including tRNAs and RNAs derived from ycf1.2, rpoC1, and rpoC2 and the ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD gene cluster. The absence of plastid rRNAs and the significant reduction of almost all plastid transcripts in white gun1 mutants account for the cotyledon phenotype. Our study provides evidence for RNA binding and maturation as the long-sought molecular function of GUN1 and resolves long-standing controversies. We anticipate that our findings will serve as a basis for subsequent studies on mechanisms of plastid gene expression and will help to elucidate the function of GUN1 in retrograde signaling.
Collapse
Affiliation(s)
- Qian Tang
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Duorong Xu
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Benjamin Lenzen
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Andreas Brachmann
- Biocenter of the LMU Munich, Genetics Section, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Madhura M Yapa
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Paymon Doroodian
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku 153-8902, Tokyo, Japan
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany.
| |
Collapse
|
2
|
Rascle C, Malbert B, Goncalves I, Choquer M, Bruel C, Poussereau N. Transcriptomic changes in the PacC transcription factor deletion mutant of the plant pathogenic fungus Botrytis cinerea under acidic and neutral conditions. BMC Genom Data 2024; 25:87. [PMID: 39385086 PMCID: PMC11466021 DOI: 10.1186/s12863-024-01257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 10/11/2024] Open
Abstract
OBJECTIVES Botrytis cinerea, the causal agent of gray mold, is a necrotrophic fungus that can infect a wide variety of plant species and plant tissues. During infection, this pathogen modulates the pH of its environment by secreting organic acids or ammonia. Deletion of the gene encoding the pH-responsive transcription factor PacC revealed the importance of this regulator in different steps of the infection process and particularly in the secretion of organics acids, reactive oxygen species and plant cell wall degrading enzymes. This study aimed to identify the genes controlled by this fungus-specific transcription factor when the fungus is placed under acidic or neutral conditions. DATA DESCRIPTION Botrytis cinerea B05.10 and the knock-out BcpacC mutant strains were grown on solid non-buffered medium for 3 days on the surface of cellophane membranes before transfer for 4 h onto the surface of liquid medium buffered at pH 5.0 or 7.0 followed by mycelium collection. After RNA sequencing, differentially expressed genes according to strains or pH conditions were listed. These data will be useful in understanding the adaptation process of B cinerea during plant infection.
Collapse
Affiliation(s)
- Christine Rascle
- Universite Claude Bernard Lyon 1, INSA Lyon, Bayer SAS, MAP, UMR5240, Villeurbanne, 69100, France
| | - Bastien Malbert
- BayerCropScience Division Centre de Recherche de la Dargoire, Lyon, 69009, France
| | - Isabelle Goncalves
- Universite Claude Bernard Lyon 1, INSA Lyon, Bayer SAS, MAP, UMR5240, Villeurbanne, 69100, France
| | - Mathias Choquer
- Universite Claude Bernard Lyon 1, INSA Lyon, Bayer SAS, MAP, UMR5240, Villeurbanne, 69100, France
| | - Christophe Bruel
- Universite Claude Bernard Lyon 1, INSA Lyon, Bayer SAS, MAP, UMR5240, Villeurbanne, 69100, France
| | - Nathalie Poussereau
- Universite Claude Bernard Lyon 1, INSA Lyon, Bayer SAS, MAP, UMR5240, Villeurbanne, 69100, France.
| |
Collapse
|
3
|
Delannoy E, Liehrmann A, Castandet B. The Use of Nanopore Sequencing to Analyze the Chloroplast Transcriptome Part II: Bioinformatic Analyzes and Virtual RNA Blots. Methods Mol Biol 2024; 2776:259-267. [PMID: 38502510 DOI: 10.1007/978-1-0716-3726-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Nanopore sequencing of full-length cDNAs offers unprecedented details of the plastid RNA metabolism. After the generation of the nanopore reads, several bioinformatic steps are required to analyze the data. In this chapter, we describe in a few simple command lines the processing and mapping of the reads as well as the generation of virtual Northern blots as a simple and familiar way to visualize Nanopore sequencing data.
Collapse
Affiliation(s)
- Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Gif sur Yvette, France.
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, CNRS, INRAE, Gif sur Yvette, France.
| | - Arnaud Liehrmann
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Gif sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, CNRS, INRAE, Gif sur Yvette, France
- Laboratoire de Mathématiques et de Modélisation d'Evry (LaMME), Université d'Evry-Val-d'Essonne, UMR CNRS 8071, ENSIIE, USC INRAE, Evry, France
| | - Benoît Castandet
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Gif sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, CNRS, INRAE, Gif sur Yvette, France
| |
Collapse
|
4
|
Skiada S, Launay-Avon A, Liehrmann A, Delannoy E, Castandet B. The Use of Nanopore Sequencing to Analyze the Chloroplast Transcriptome Part I: Library Preparation. Methods Mol Biol 2024; 2776:243-257. [PMID: 38502509 DOI: 10.1007/978-1-0716-3726-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Global understanding of plastid gene expression has always been impaired by its complexity. RNA splicing, editing, and intercistronic processing create multiple transcripts isoforms that can hardly be resolved using traditional molecular biology techniques. During the last decade, the wide adoption of RNA-seq-based techniques has, however, allowed an unprecedented understanding of all the different steps of chloroplast gene expression, from transcription to translation. Current strategies are nonetheless unable to identify and quantify full length transcripts isoforms, a limitation that can now be overcome using Nanopore Sequencing. We here provide a complete protocol to produce, from total leaf RNA, cDNA libraries ready for Nanopore sequencing. While most Nanopore protocols take advantage of the mRNA polyA tail we here first ligate an RNA adapter to the 3' ends of the RNAs and use it to initiate the template switching reverse transcription. The cDNA is then prepared and indexed for use with the regular Oxford Nanopore v14 chemistry. This protocol is of particular interest to researchers willing to simultaneously study the multiple post-transcriptional processes prevalent in the chloroplast.
Collapse
Affiliation(s)
- Sébastien Skiada
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Gif sur Yvette, France
| | - Alexandra Launay-Avon
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Gif sur Yvette, France
- Laboratoire de Mathématiques et de Modélisation d'Evry (LaMME), Université d'Evry-Val-d'Essonne, UMR CNRS 8071, ENSIIE, USC INRAE, Evry, France
| | - Arnaud Liehrmann
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Gif sur Yvette, France
- Laboratoire de Mathématiques et de Modélisation d'Evry (LaMME), Université d'Evry-Val-d'Essonne, UMR CNRS 8071, ENSIIE, USC INRAE, Evry, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Gif sur Yvette, France
| | - Benoît Castandet
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Gif sur Yvette, France.
| |
Collapse
|
5
|
Xu D, Tang Q, Xu P, Schäffner AR, Leister D, Kleine T. Response of the organellar and nuclear (post)transcriptomes of Arabidopsis to drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1220928. [PMID: 37528975 PMCID: PMC10387551 DOI: 10.3389/fpls.2023.1220928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Plants have evolved sophisticated mechanisms to cope with drought, which involve massive changes in nuclear gene expression. However, little is known about the roles of post-transcriptional processing of nuclear or organellar transcripts and how meaningful these changes are. To address these issues, we used RNA-sequencing after ribosomal RNA depletion to monitor (post)transcriptional changes during different times of drought exposure in Arabidopsis Col-0. Concerning the changes detected in the organellar transcriptomes, chloroplast transcript levels were globally reduced, editing efficiency dropped, but splicing was not affected. Mitochondrial transcripts were slightly elevated, while editing and splicing were unchanged. Conversely, alternative splicing (AS) affected nearly 1,500 genes (9% of expressed nuclear genes). Of these, 42% were regulated solely at the level of AS, representing transcripts that would have gone unnoticed in a microarray-based approach. Moreover, we identified 927 isoform switching events. We provide a table of the most interesting candidates, and as proof of principle, increased drought tolerance of the carbonic anhydrase ca1 and ca2 mutants is shown. In addition, altering the relative contributions of the spliced isoforms could increase drought resistance. For example, our data suggest that the accumulation of a nonfunctional FLM (FLOWERING LOCUS M) isoform and not the ratio of FLM-ß and -δ isoforms may be responsible for the phenotype of early flowering under long-day drought conditions. In sum, our data show that AS enhances proteome diversity to counteract drought stress and represent a valuable resource that will facilitate the development of new strategies to improve plant performance under drought.
Collapse
Affiliation(s)
- Duorong Xu
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Qian Tang
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ping Xu
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Anton R. Schäffner
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Guilcher M, Liehrmann A, Seyman C, Blein T, Rigaill G, Castandet B, Delannoy E. Full Length Transcriptome Highlights the Coordination of Plastid Transcript Processing. Int J Mol Sci 2021; 22:ijms222011297. [PMID: 34681956 PMCID: PMC8537030 DOI: 10.3390/ijms222011297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
Plastid gene expression involves many post-transcriptional maturation steps resulting in a complex transcriptome composed of multiple isoforms. Although short-read RNA-Seq has considerably improved our understanding of the molecular mechanisms controlling these processes, it is unable to sequence full-length transcripts. This information is crucial, however, when it comes to understanding the interplay between the various steps of plastid gene expression. Here, we describe a protocol to study the plastid transcriptome using nanopore sequencing. In the leaf of Arabidopsis thaliana, with about 1.5 million strand-specific reads mapped to the chloroplast genome, we could recapitulate most of the complexity of the plastid transcriptome (polygenic transcripts, multiple isoforms associated with post-transcriptional processing) using virtual Northern blots. Even if the transcripts longer than about 2500 nucleotides were missing, the study of the co-occurrence of editing and splicing events identified 42 pairs of events that were not occurring independently. This study also highlighted a preferential chronology of maturation events with splicing happening after most sites were edited.
Collapse
Affiliation(s)
- Marine Guilcher
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91405 Orsay, France; (M.G.); (A.L.); (T.B.); (G.R.); (B.C.)
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Arnaud Liehrmann
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91405 Orsay, France; (M.G.); (A.L.); (T.B.); (G.R.); (B.C.)
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
- Laboratoire de Mathématiques et de Modélisation d’Evry (LaMME), Université d’Evry-Val-d’Essonne, UMR CNRS 8071, ENSIIE, USC INRAE, 91000 Evry, France;
| | - Chloé Seyman
- Laboratoire de Mathématiques et de Modélisation d’Evry (LaMME), Université d’Evry-Val-d’Essonne, UMR CNRS 8071, ENSIIE, USC INRAE, 91000 Evry, France;
| | - Thomas Blein
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91405 Orsay, France; (M.G.); (A.L.); (T.B.); (G.R.); (B.C.)
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Guillem Rigaill
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91405 Orsay, France; (M.G.); (A.L.); (T.B.); (G.R.); (B.C.)
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
- Laboratoire de Mathématiques et de Modélisation d’Evry (LaMME), Université d’Evry-Val-d’Essonne, UMR CNRS 8071, ENSIIE, USC INRAE, 91000 Evry, France;
| | - Benoit Castandet
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91405 Orsay, France; (M.G.); (A.L.); (T.B.); (G.R.); (B.C.)
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91405 Orsay, France; (M.G.); (A.L.); (T.B.); (G.R.); (B.C.)
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
- Correspondence:
| |
Collapse
|
7
|
Castandet B, Germain A, Hotto AM, Stern DB. Systematic sequencing of chloroplast transcript termini from Arabidopsis thaliana reveals >200 transcription initiation sites and the extensive imprints of RNA-binding proteins and secondary structures. Nucleic Acids Res 2020; 47:11889-11905. [PMID: 31732725 PMCID: PMC7145512 DOI: 10.1093/nar/gkz1059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022] Open
Abstract
Chloroplast transcription requires numerous quality control steps to generate the complex but selective mixture of accumulating RNAs. To gain insight into how this RNA diversity is achieved and regulated, we systematically mapped transcript ends by developing a protocol called Terminome-seq. Using Arabidopsis thaliana as a model, we catalogued >215 primary 5′ ends corresponding to transcription start sites (TSS), as well as 1628 processed 5′ ends and 1299 3′ ends. While most termini were found in intergenic regions, numerous abundant termini were also found within coding regions and introns, including several major TSS at unexpected locations. A consistent feature was the clustering of both 5′ and 3′ ends, contrasting with the prevailing description of discrete 5′ termini, suggesting an imprecision of the transcription and/or RNA processing machinery. Numerous termini correlated with the extremities of small RNA footprints or predicted stem-loop structures, in agreement with the model of passive RNA protection. Terminome-seq was also implemented for pnp1–1, a mutant lacking the processing enzyme polynucleotide phosphorylase. Nearly 2000 termini were altered in pnp1–1, revealing a dominant role in shaping the transcriptome. In summary, Terminome-seq permits precise delineation of the roles and regulation of the many factors involved in organellar transcriptome quality control.
Collapse
Affiliation(s)
- Benoît Castandet
- Boyce Thompson Institute, Ithaca, NY 14853, USA.,Institut des Sciences des Plantes de Paris Saclay (IPS2), UEVE, INRA, CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91192 Gif sur Yvette, France.,Université de Paris, IPS2, F-91192 Gif sur Yvette, France
| | | | | | | |
Collapse
|
8
|
Plant Ribonuclease J: An Essential Player in Maintaining Chloroplast RNA Quality Control for Gene Expression. PLANTS 2020; 9:plants9030334. [PMID: 32151111 PMCID: PMC7154860 DOI: 10.3390/plants9030334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022]
Abstract
RNA quality control is an indispensable but poorly understood process that enables organisms to distinguish functional RNAs from nonfunctional or inhibitory ones. In chloroplasts, whose gene expression activities are required for photosynthesis, retrograde signaling, and plant development, RNA quality control is of paramount importance, as transcription is relatively unregulated. The functional RNA population is distilled from this initial transcriptome by a combination of RNA-binding proteins and ribonucleases. One of the key enzymes is RNase J, a 5′→3′ exoribonuclease and an endoribonuclease that has been shown to trim 5′ RNA termini and eliminate deleterious antisense RNA. In the absence of RNase J, embryo development cannot be completed. Land plant RNase J contains a highly conserved C-terminal domain that is found in GT-1 DNA-binding transcription factors and is not present in its bacterial, archaeal, and algal counterparts. The GT-1 domain may confer specificity through DNA and/or RNA binding and/or protein–protein interactions and thus be an element in the mechanisms that identify target transcripts among diverse RNA populations. Further understanding of chloroplast RNA quality control relies on discovering how RNase J is regulated and how its specificity is imparted.
Collapse
|
9
|
The Analysis of the Editing Defects in the dyw2 Mutant Provides New Clues for the Prediction of RNA Targets of Arabidopsis E+-Class PPR Proteins. PLANTS 2020; 9:plants9020280. [PMID: 32098170 PMCID: PMC7076377 DOI: 10.3390/plants9020280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/02/2023]
Abstract
C to U editing is one of the post-transcriptional steps which are required for the proper expression of chloroplast and mitochondrial genes in plants. It depends on several proteins acting together which include the PLS-class pentatricopeptide repeat proteins (PPR). DYW2 was recently shown to be required for the editing of many sites in both organelles. In particular almost all the sites associated with the E+ subfamily of PPR proteins are depending on DYW2, suggesting that DYW2 is required for the function of E+-type PPR proteins. Here we strengthened this link by identifying 16 major editing sites controlled by 3 PPR proteins: OTP90, a DYW-type PPR and PGN and MEF37, 2 E+-type PPR proteins. A re-analysis of the DYW2 editotype showed that the 49 sites known to be associated with the 18 characterized E+-type PPR proteins all depend on DYW2. Considering only the 288 DYW2-dependent editing sites as potential E+-type PPR sites, instead of the 795 known editing sites, improves the performances of binding predictions systems based on the PPR code for E+-type PPR proteins. However, it does not compensate for poor binding predictions.
Collapse
|