1
|
Li M, Liu C, Yin J, Liu G, Chen D. Single-Step Synthesis of Highly Tunable Multifunctional Nanoliposomes for Synergistic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21301-21309. [PMID: 35502842 DOI: 10.1021/acsami.2c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer is still one of the major diseases that humans have not conquered yet. Nanotechnology has promoted the development of multifunctional nanoparticles, which integrate diagnostic and treatment abilities for tumor imaging and therapy. However, its preparation methods usually require complicated unit operations, which result in large batch-to-batch differences, poor reproducibility, high production costs, and difficulty in clinical transformation. Furthermore, precisely manufacturing nanoliposomes with different tunable features (e.g., size, surface charge, targeting ligands, and so forth) remains a challenge, limiting effective nanoliposome optimization for tumor therapy. Due to the accurate control of the synthesis process and continuous operation mode, microfluidic technology becomes an emerging approach for the manufacturing of nanoliposomes. However, there are few reports on the single-step preparation of complex nanoliposomes by precise tuning of the physical properties, while investigating the influence of anti-cancer efficiency. Herein, we have prepared multifunctional nanoliposomes with accurate tuning properties through a microfluidic device in a single step, with synergistic photodynamic and chemodynamic effects for targeted tumor therapy. The preparation method provides an effective way for the one-step preparation of multifunctional nanoparticles with controllable particle sizes and surface properties.
Collapse
Affiliation(s)
- Mao Li
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jieli Yin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guoyan Liu
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian 361102, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, China
| | - Dengyue Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
2
|
Born LJ, Kai-Hua Chang, Shoureshi P, Lay F, Bengali S, Hsu ATW, Abadchi SN, Harmon JW, Jay SM. HOTAIR-Loaded Mesenchymal Stem/Stromal Cell Extracellular Vesicles Enhance Angiogenesis and Wound Healing. Adv Healthc Mater 2022; 11:e2002070. [PMID: 33870645 PMCID: PMC8522167 DOI: 10.1002/adhm.202002070] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Chronic wounds remain a substantial source of morbidity worldwide. An emergent approach that may be well-suited to induce the complex, multicellular processes such as angiogenesis that are required for wound repair is the use of extracellular vesicles (EVs). EVs contain a wide variety of proteins and nucleic acids that enable multifactorial signaling. Here, the capability of EVs is leveraged to be engineered via producer cell modification to investigate the therapeutic potential of EVs from mesenchymal stem/stromal cells (MSCs) transfected to overexpress long non-coding RNA HOX transcript antisense RNA (HOTAIR). HOTAIR is previously shown by the authors' group to be critical in mediating angiogenic effects of endothelial cell EVs, and MSCs are chosen as EV producer cells for this study due to their widely reported intrinsic angiogenic properties. The results indicate that MSCs overexpressing HOTAIR (HOTAIR-MSCs) produce EVs with increased HOTAIR content that promote angiogenesis and wound healing in diabetic (db/db) mice. Further, endothelial cells exposed to HOTAIR-MSC EVs exhibit increased HOTAIR content correlated with upregulation of the angiogenic protein vascular endothelial growth factor. Thus, this study supports EV-mediated HOTAIR delivery as a strategy for further exploration toward healing of chronic wounds.
Collapse
Affiliation(s)
- Louis J. Born
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Kai-Hua Chang
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pouria Shoureshi
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frank Lay
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sameer Bengali
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angela Ting Wei Hsu
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanaz Nourmohammadi Abadchi
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John W. Harmon
- Hendrix Burn and Wound Healing Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA,Program in Molecular and Cell Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
3
|
Shakeri A, Khan S, Didar TF. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. LAB ON A CHIP 2021; 21:3053-3075. [PMID: 34286800 DOI: 10.1039/d1lc00288k] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microfluidics is an emerging and multidisciplinary field that is of great interest to manufacturers in medicine, biotechnology, and chemistry, as it provides unique tools for the development of point-of-care diagnostics, organs-on-chip systems, and biosensors. Polymeric microfluidics, unlike glass and silicon, offer several advantages such as low-cost mass manufacturing and a wide range of beneficial material properties, which make them the material of choice for commercial applications and high-throughput systems. Among polymers used for the fabrication of microfluidic devices, polydimethylsiloxane (PDMS) still remains the most widely used material in academia due to its advantageous properties, such as excellent transparency and biocompatibility. However, commercialization of PDMS has been a challenge mostly due to the high cost of the current fabrication strategies. Moreover, specific surface modification and functionalization steps are required to tailor the surface chemistry of PDMS channels (e.g. biomolecule immobilization, surface hydrophobicity and antifouling properties) with respect to the desired application. While significant research has been reported in the field of PDMS microfluidics, functionalization of PDMS surfaces remains a critical step in the fabrication process that is difficult to navigate. This review first offers a thorough illustration of existing fabrication methods for PDMS-based microfluidic devices, providing several recent advancements in this field with the aim of reducing the cost and time for mass production of these devices. Next, various conventional and emerging approaches for engineering the surface chemistry of PDMS are discussed in detail. We provide a wide range of functionalization techniques rendering PDMS microchannels highly biocompatible for physical or covalent immobilization of various biological entities while preventing non-specific interactions.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada.
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Tohid F Didar
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada.
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
4
|
Zhang M, Gao S, Yang D, Fang Y, Lin X, Jin X, Liu Y, Liu X, Su K, Shi K. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm Sin B 2021; 11:2265-2285. [PMID: 34522587 PMCID: PMC8424218 DOI: 10.1016/j.apsb.2021.03.033] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
The administration of nanoparticles (NPs) first faces the challenges of evading renal filtration and clearance of reticuloendothelial system (RES). After that, NPs infiltrate through the expanded endothelial space and penetrated the dense stroma of tumor microenvironment to tumor cells. As long as possible to prolong the time of NPs remaining in tumor tissue, NPs release active agent and induce pharmacological action. This review provides a comprehensive summary of the physical and chemical properties of NPs and the influence of various biological factors in tumor microenvironment, and discusses how to improve the final efficacy through adjusting the characteristics and structure of NPs. Perspectives and future directions are also provided.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kai Shi
- Corresponding author. Tel./fax: +86 24 43520557.
| |
Collapse
|
5
|
Nanoparticles and Microfluidic Devices in Cancer Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:161-171. [PMID: 32285370 DOI: 10.1007/978-3-030-36588-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is considered the disease of the century, which can be easily understood considering its increasing incidence worldwide. Over the last years, nanotechnology has been presenting promising theranostic approaches to tackle cancer, as the development of nanoparticle-based therapies. But, regardless of the promising outcomes within in vitro settings, its translation into the clinics has been delayed. One of the main reasons is the lack of an appropriate in vitro model, capable to mimic the true environment of the human body, to test the designed nanoparticles. In fact, most of in vitro models used for the validation of nanoparticle-based therapies do not address adequately the complex barriers that naturally occur in a tumor scenario, as such as blood vessels, the interstitial fluid pressure or the interactions with surrounding cells that can hamper the proper delivery of the nanoparticles into the desired site. In this reasoning, to get a step closer to the in vivo reality, it has been proposed of the use of microfluidic devices. In fact, microfluidic devices can be designed on-demand to exhibit complex structures that mimic tissue/organ-level physiological architectures. Even so, despite microfluidic-based in vitro models do not compare with the reality and complexity of the human body, the most complex systems created up to now have been showing similar results to in vivo animal models. Microfluidic devices have been proven to be a valuable tool to accomplish more realistic tumour's environment. The recent advances in this field, and in particular, the ones enabling the rapid test of new therapies, and show great promise to be translated to the clinics will be overviewed herein.
Collapse
|
6
|
Feng X, Dixon H, Glen‐Ravenhill H, Karaosmanoglu S, Li Q, Yan L, Chen X. Smart Nanotechnologies to Target Tumor with Deep Penetration Depth for Efficient Cancer Treatment and Imaging. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xue Feng
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Hannah Dixon
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Harriet Glen‐Ravenhill
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Sena Karaosmanoglu
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Quan Li
- School of EngineeringInstitute for Energy SystemsThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
| | - Li Yan
- Monash Institute of Pharmaceutical SciencesMonash University Parkville Victoria 3052 Australia
| | - Xianfeng Chen
- School of EngineeringInstitute for BioengineeringThe University of Edinburgh King's Buildings, Mayfield Road Edinburgh EH9 3JL UK
- Translational Medicine CenterThe Second Affiliated HospitalGuangzhou Medical University Guangzhou 510182 P. R. China
| |
Collapse
|