1
|
Zhang L, Wang G, Li H, Zhao T. Role Analysis of the scarb1 Gene in the Pigmentation of Neocaridina denticulata sinensis. Animals (Basel) 2025; 15:901. [PMID: 40218295 PMCID: PMC11987898 DOI: 10.3390/ani15070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Body color is a key economic trait for Neocaridina denticulata sinensis, an important ornamental shrimp. Scarb1 may be an important mediator of astaxanthin uptake, changing the shrimp's body color. To discover the relationship between scarb1 and the pigmentation of cherry shrimp, the expression profiles, RNAi, and SNP genotyping of scarb1 were studied. There were significant differences in four color populations and five development stages (p < 0.05). The highest expression level of scarb1 appeared in the red population and the pre-nauplius stage. Exposure to scarb1 dsRNA increased the number and development of chromatophores at the metanauplius stage, but almost no phenotypic changes were observed at the pre-zoea stage. There was a synonymous SNP (G1593A) with a significantly different genotype frequency between the red and yellow populations (p < 0.05). The above results suggested that scarb1 is involved in pigmentation by affecting the development of chromatophores.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (L.Z.); (H.L.); (T.Z.)
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (L.Z.); (H.L.); (T.Z.)
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
| | - Haifan Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (L.Z.); (H.L.); (T.Z.)
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
| | - Tanjun Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (L.Z.); (H.L.); (T.Z.)
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
2
|
Hebbar S, Traikov S, Hälsig C, Knust E. Modulating the Kynurenine pathway or sequestering toxic 3-hydroxykynurenine protects the retina from light-induced damage in Drosophila. PLoS Genet 2023; 19:e1010644. [PMID: 36952572 PMCID: PMC10035932 DOI: 10.1371/journal.pgen.1010644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/30/2023] [Indexed: 03/25/2023] Open
Abstract
Tissue health is regulated by a myriad of exogenous or endogenous factors. Here we investigated the role of the conserved Kynurenine pathway (KP) in maintaining retinal homeostasis in the context of light stress in Drosophila melanogaster. cinnabar, cardinal and scarlet are fly genes that encode different steps in the KP. Along with white, these genes are known regulators of brown pigment (ommochrome) biosynthesis. Using white as a sensitized genetic background, we show that mutations in cinnabar, cardinal and scarlet differentially modulate light-induced retinal damage. Mass Spectrometric measurements of KP metabolites in flies with different genetic combinations support the notion that increased levels of 3-hydroxykynurenine (3OH-K) and Xanthurenic acid (XA) enhance retinal damage, whereas Kynurenic Acid (KYNA) and Kynurenine (K) are neuro-protective. This conclusion was corroborated by showing that feeding 3OH-K results in enhanced retinal damage, whereas feeding KYNA protects the retina in sensitized genetic backgrounds. Interestingly, the harmful effects of free 3OH-K are diminished by its sub-cellular compartmentalization. Sequestering of 3OH-K enables the quenching of its toxicity through conversion to brown pigment or conjugation to proteins. This work enabled us to decouple the role of these KP genes in ommochrome formation from their role in retinal homeostasis. Additionally, it puts forward new hypotheses on the importance of the balance of KP metabolites and their compartmentalization in disease alleviation.
Collapse
Affiliation(s)
- Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sofia Traikov
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Catrin Hälsig
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
3
|
Preclinical Models of Retinitis Pigmentosa. Methods Mol Biol 2022; 2560:181-215. [PMID: 36481897 DOI: 10.1007/978-1-0716-2651-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is the name for a group of phenotypically-related heritable retinal degenerative disorders. Many genes have been implicated as causing variants of RP, and while the clinical phenotypes are remarkably similar, they may differ in age of onset, progression, and severity. Common inheritance patterns for specific genes connected with the development of the disorder include autosomal dominant, autosomal recessive, and X-linked. Modeling the disease in animals and other preclinical systems offers a cost-conscious, ethical, and time-efficient method for studying the disease subtypes. The history of RP models is briefly examined, and both naturally occurring and transgenic preclinical models of RP in many different organisms are discussed. Syndromic forms of RP and models thereof are reviewed as well.
Collapse
|
4
|
Catalani E, Silvestri F, Bongiorni S, Taddei AR, Fanelli G, Rinalducci S, De Palma C, Perrotta C, Prantera G, Cervia D. Retinal damage in a new model of hyperglycemia induced by high-sucrose diets. Pharmacol Res 2021; 166:105488. [PMID: 33582248 DOI: 10.1016/j.phrs.2021.105488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Loss of retinal neurons may precede clinical signs of diabetic retinopathy (DR). We studied for the first time the effects of hyperglycemia on the visual system of the fruit fly Drosophila melanogaster to characterize a model for glucose-induced retinal neurodegeneration, thus complementing more traditional vertebrate systems. Adult flies were fed with increased high-sucrose regimens which did not modify the locomotion ability, muscle phenotype and mobility after 10 days. The increased availability of dietary sucrose induced hyperglycemia and phosphorylation of Akt in fat tissue, without significant effects on adult growth and viability, consistent with the early phase of insulin signaling and a low impact on the overall metabolic profile of flies at short term. Noteworthy, high-sucrose diets significantly decreased Drosophila responsiveness to the light as a consequence of vision defects. Hyperglycemia did not alter the gross anatomical architecture of the external eye phenotype although a progressive damage of photosensitive units was observed. Appreciable levels of cleaved caspase 3 and nitrotyrosine were detected in the internal retina network as well as punctate staining of Light-Chain 3 and p62, and accumulated autophagosomes, indicating apoptotic features, peroxynitrite formation and autophagy turnover defects. In summary, our results in Drosophila support the view that hyperglycemia induced by high-sucrose diets lead to eye defects, apoptosis/autophagy dysregulation, oxidative stress, and visual dysfunctions which are evolutionarily conserved, thus offering a meaningful opportunity of using a simple in vivo model to study the pathophysiology of neuroretinal alterations that develop in patients at the early stages of DR.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Federica Silvestri
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Anna Rita Taddei
- Section of Electron Microscopy, Great Equipment Center, Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via L. Vanvitelli 32, 20129 Milano, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
5
|
Stanković D, Claudius AK, Schertel T, Bresser T, Uhlirova M. A Drosophila model to study retinitis pigmentosa pathology associated with mutations in the core splicing factor Prp8. Dis Model Mech 2020; 13:dmm043174. [PMID: 32424050 PMCID: PMC7328144 DOI: 10.1242/dmm.043174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/04/2020] [Indexed: 12/30/2022] Open
Abstract
Retinitis pigmentosa (RP) represents genetically heterogeneous and clinically variable disease characterized by progressive degeneration of photoreceptors resulting in a gradual loss of vision. The autosomal dominant RP type 13 (RP13) has been linked to the malfunction of PRPF8, an essential component of the spliceosome. Over 20 different RP-associated PRPF8 mutations have been identified in human patients. However, the cellular and molecular consequences of their expression in vivo in specific tissue contexts remain largely unknown. Here, we establish a Drosophila melanogaster model for RP13 by introducing the nine distinct RP mutations into the fly PRPF8 ortholog prp8 and express the mutant proteins in precise spatiotemporal patterns using the Gal4/UAS system. We show that all nine RP-Prp8 mutant proteins negatively impact developmental timing, albeit to a different extent, when expressed in the endocrine cells producing the primary insect moulting hormone. In the developing eye primordium, uncommitted epithelial precursors rather than differentiated photoreceptors appeared sensitive to Prp8 malfunction. Expression of the two most pathogenic variants, Prp8S>F and Prp8H>R, induced apoptosis causing alterations to the adult eye morphology. The affected tissue mounted stress and cytoprotective responses, while genetic programs underlying neuronal function were attenuated. Importantly, the penetrance and expressivity increased under prp8 heterozygosity. In contrast, blocking apoptosis alleviated cell loss but not the redox imbalance. Remarkably, the pathogenicity of the RP-Prp8 mutations in Drosophila correlates with the severity of clinical phenotypes in patients carrying the equivalent mutations, highlighting the suitability of the Drosophila model for in-depth functional studies of the mechanisms underlying RP13 etiology.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Ann-Katrin Claudius
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Thomas Schertel
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tina Bresser
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany
| |
Collapse
|
6
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:E931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| |
Collapse
|
7
|
Kraut RS, Knust E. Changes in endolysosomal organization define a pre-degenerative state in the crumbs mutant Drosophila retina. PLoS One 2019; 14:e0220220. [PMID: 31834921 PMCID: PMC6910688 DOI: 10.1371/journal.pone.0220220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/24/2019] [Indexed: 01/06/2023] Open
Abstract
Mutations in the epithelial polarity gene crumbs (crb) lead to retinal degeneration in Drosophila and in humans. The overall morphology of the retina and its deterioration in Drosophila crb mutants has been well-characterized, but the cell biological origin of the degeneration is not well understood. Degenerative conditions in the retina and elsewhere in the nervous system often involve defects in degradative intracellular trafficking pathways. So far, however, effects of crb on the endolysosomal system, or on the spatial organization of these compartments in photoreceptor cells have not been described. We therefore asked whether photoreceptors in crb mutants exhibit alterations in endolysosomal compartments under pre-degenerative conditions, where the retina is still morphologically intact. Data presented here show that, already well before the onset of degeneration, Arl8, Rab7, and Atg8-carrying endolysosomal and autophagosomal compartments undergo changes in morphology and positioning with respect to each other in crb mutant retinas. We propose that these changes may be early signs of the degeneration-prone condition in crb retinas.
Collapse
Affiliation(s)
- Rachel S. Kraut
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse, Dresden, Germany
- * E-mail:
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse, Dresden, Germany
| |
Collapse
|