1
|
Schwab S, Dame RT. Identification, characterization and classification of prokaryotic nucleoid-associated proteins. Mol Microbiol 2025; 123:206-217. [PMID: 39039769 PMCID: PMC11894785 DOI: 10.1111/mmi.15298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Common throughout life is the need to compact and organize the genome. Possible mechanisms involved in this process include supercoiling, phase separation, charge neutralization, macromolecular crowding, and nucleoid-associated proteins (NAPs). NAPs are special in that they can organize the genome at multiple length scales, and thus are often considered as the architects of the genome. NAPs shape the genome by either bending DNA, wrapping DNA, bridging DNA, or forming nucleoprotein filaments on the DNA. In this mini-review, we discuss recent advancements of unique NAPs with differing architectural properties across the tree of life, including NAPs from bacteria, archaea, and viruses. To help the characterization of NAPs from the ever-increasing number of metagenomes, we recommend a set of cheap and simple in vitro biochemical assays that give unambiguous insights into the architectural properties of NAPs. Finally, we highlight and showcase the usefulness of AlphaFold in the characterization of novel NAPs.
Collapse
Affiliation(s)
- Samuel Schwab
- Leiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands
- Centre for Microbial Cell BiologyLeiden UniversityLeidenThe Netherlands
- Centre for Interdisciplinary Genome ResearchLeiden UniversityLeidenThe Netherlands
| | - Remus T. Dame
- Leiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands
- Centre for Microbial Cell BiologyLeiden UniversityLeidenThe Netherlands
- Centre for Interdisciplinary Genome ResearchLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
2
|
Corbeski I, Horn V, van der Valk RA, le Paige U, Dame RT, van Ingen H. Microscale Thermophoresis Analysis of Chromatin Interactions. Methods Mol Biol 2024; 2819:357-379. [PMID: 39028515 DOI: 10.1007/978-1-0716-3930-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. The activity of architectural proteins is often subject to further modulation and regulation through the interaction with a diverse array of other protein factors. Detailed knowledge on the binding modes involved is crucial for our understanding of how these protein-protein and protein-DNA interactions shape the functional landscape of chromatin in all kingdoms of life: bacteria, archaea, and eukarya.Microscale thermophoresis (MST) is a biophysical technique for the study of biomolecular interactions. It has seen increasing application in recent years thanks to its solution-based nature, rapid application, modest sample demand, and the sensitivity of the thermophoresis effect to binding events.Here, we describe the use of MST in the study of chromatin interactions. The emphasis lies on the wide range of ways in which these experiments are set up and the diverse types of information they reveal. These aspects are illustrated with four very different systems: the sequence-dependent DNA compaction by architectural protein HMfB, the sequential binding of core histone complexes to histone chaperone APLF, the impact of the nucleosomal context on the recognition of histone modifications, and the binding of a viral peptide to the nucleosome. Special emphasis is given to the key steps in the design, execution, and analysis of MST experiments in the context of the provided examples.
Collapse
Affiliation(s)
- Ivan Corbeski
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Velten Horn
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- CSL Behring, Hattersheim, Germany
| | - Ramon A van der Valk
- Kavli Institute of NanoScience, Department of Bionanoscience, Faculty of Applied Sciences, TU Delft, Delft, The Netherlands
| | - Ulric le Paige
- Structure and Dynamics of Biomolecules, Department of Chemistry, Ecole Normale Supérieure - Paris Sciences et Lettres, Paris, France
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Hugo van Ingen
- Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Ofer S, Blombach F, Erkelens AM, Barker D, Soloviev Z, Schwab S, Smollett K, Matelska D, Fouqueau T, van der Vis N, Kent NA, Thalassinos K, Dame RT, Werner F. DNA-bridging by an archaeal histone variant via a unique tetramerisation interface. Commun Biol 2023; 6:968. [PMID: 37740023 PMCID: PMC10516927 DOI: 10.1038/s42003-023-05348-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
In eukaryotes, histone paralogues form obligate heterodimers such as H3/H4 and H2A/H2B that assemble into octameric nucleosome particles. Archaeal histones are dimeric and assemble on DNA into 'hypernucleosome' particles of varying sizes with each dimer wrapping 30 bp of DNA. These are composed of canonical and variant histone paralogues, but the function of these variants is poorly understood. Here, we characterise the structure and function of the histone paralogue MJ1647 from Methanocaldococcus jannaschii that has a unique C-terminal extension enabling homotetramerisation. The 1.9 Å X-ray structure of a dimeric MJ1647 species, structural modelling of the tetramer, and site-directed mutagenesis reveal that the C-terminal tetramerization module consists of two alpha helices in a handshake arrangement. Unlike canonical histones, MJ1647 tetramers can bridge two DNA molecules in vitro. Using single-molecule tethered particle motion and DNA binding assays, we show that MJ1647 tetramers bind ~60 bp DNA and compact DNA in a highly cooperative manner. We furthermore show that MJ1647 effectively competes with the transcription machinery to block access to the promoter in vitro. To the best of our knowledge, MJ1647 is the first histone shown to have DNA bridging properties, which has important implications for genome structure and gene expression in archaea.
Collapse
Affiliation(s)
- Sapir Ofer
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Fabian Blombach
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Amanda M Erkelens
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Declan Barker
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Zoja Soloviev
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Samuel Schwab
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Katherine Smollett
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Dorota Matelska
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Thomas Fouqueau
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Nico van der Vis
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Nicholas A Kent
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Konstantinos Thalassinos
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| | - Finn Werner
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
4
|
Erkelens AM, Henneman B, van der Valk RA, Kirolos NCS, Dame RT. Specific DNA binding of archaeal histones HMfA and HMfB. Front Microbiol 2023; 14:1166608. [PMID: 37143534 PMCID: PMC10151503 DOI: 10.3389/fmicb.2023.1166608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
In archaea, histones play a role in genome compaction and are involved in transcription regulation. Whereas archaeal histones bind DNA without sequence specificity, they bind preferentially to DNA containing repeats of alternating A/T and G/C motifs. These motifs are also present on the artificial sequence "Clone20," a high-affinity model sequence for binding of the histones from Methanothermus fervidus. Here, we investigate the binding of HMfA and HMfB to Clone20 DNA. We show that specific binding at low protein concentrations (<30 nM) yields a modest level of DNA compaction, attributed to tetrameric nucleosome formation, whereas nonspecific binding strongly compacts DNA. We also demonstrate that histones impaired in hypernucleosome formation are still able to recognize the Clone20 sequence. Histone tetramers indeed exhibit a higher binding affinity for Clone20 than nonspecific DNA. Our results indicate that a high-affinity DNA sequence does not act as a nucleation site, but is bound by a tetramer which we propose is geometrically different from the hypernucleosome. Such a mode of histone binding might permit sequence-driven modulation of hypernucleosome size. These findings might be extrapolated to histone variants that do not form hypernucleosomes. Versatile binding modes of histones could provide a platform for functional interplay between genome compaction and transcription.
Collapse
Affiliation(s)
| | - Bram Henneman
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | | | - Remus T. Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, Netherlands
- *Correspondence: Remus T. Dame,
| |
Collapse
|
5
|
System-Wide Analysis of the GATC-Binding Nucleoid-Associated Protein Gbn and Its Impact on
Streptomyces
Development. mSystems 2022; 7:e0006122. [PMID: 35575488 PMCID: PMC9239103 DOI: 10.1128/msystems.00061-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large part of the chemical space of bioactive natural products is derived from
Actinobacteria
. Many of the biosynthetic gene clusters for these compounds are cryptic; in others words, they are expressed in nature but not in the laboratory.
Collapse
|
6
|
Henneman B, Brouwer TB, Erkelens AM, Kuijntjes GJ, van Emmerik C, van der Valk RA, Timmer M, Kirolos NCS, van Ingen H, van Noort J, Dame RT. Mechanical and structural properties of archaeal hypernucleosomes. Nucleic Acids Res 2021; 49:4338-4349. [PMID: 33341892 PMCID: PMC8096283 DOI: 10.1093/nar/gkaa1196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
Many archaea express histones, which organize the genome and play a key role in gene regulation. The structure and function of archaeal histone–DNA complexes remain however largely unclear. Recent studies show formation of hypernucleosomes consisting of DNA wrapped around an ‘endless’ histone-protein core. However, if and how such a hypernucleosome structure assembles on a long DNA substrate and which interactions provide for its stability, remains unclear. Here, we describe micromanipulation studies of complexes of the histones HMfA and HMfB with DNA. Our experiments show hypernucleosome assembly which results from cooperative binding of histones to DNA, facilitated by weak stacking interactions between neighboring histone dimers. Furthermore, rotational force spectroscopy demonstrates that the HMfB–DNA complex has a left-handed chirality, but that torque can drive it in a right-handed conformation. The structure of the hypernucleosome thus depends on stacking interactions, torque, and force. In vivo, such modulation of the archaeal hypernucleosome structure may play an important role in transcription regulation in response to environmental changes.
Collapse
Affiliation(s)
- Bram Henneman
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Thomas B Brouwer
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Amanda M Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Gert-Jan Kuijntjes
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Clara van Emmerik
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Ramon A van der Valk
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Nancy C S Kirolos
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
7
|
Dynamic human MutSα-MutLα complexes compact mismatched DNA. Proc Natl Acad Sci U S A 2020; 117:16302-16312. [PMID: 32586954 DOI: 10.1073/pnas.1918519117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure-function properties of these obligate MutSα-MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα-MutLα-DNA complexes. We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS-MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes.
Collapse
|
8
|
Brouwer TB, Hermans N, van Noort J. Multiplexed Nanometric 3D Tracking of Microbeads Using an FFT-Phasor Algorithm. Biophys J 2020; 118:2245-2257. [PMID: 32053775 PMCID: PMC7202940 DOI: 10.1016/j.bpj.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/23/2023] Open
Abstract
Many single-molecule biophysical techniques rely on nanometric tracking of microbeads to obtain quantitative information about the mechanical properties of biomolecules such as chromatin fibers. Their three-dimensional (3D) position can be resolved by holographic analysis of the diffraction pattern in wide-field imaging. Fitting this diffraction pattern to Lorenz-Mie scattering theory yields the bead's position with nanometer accuracy in three dimensions but is computationally expensive. Real-time multiplexed bead tracking therefore requires a more efficient tracking method, such as comparison with previously measured diffraction patterns, known as look-up tables. Here, we introduce an alternative 3D phasor algorithm that provides robust bead tracking with nanometric localization accuracy in a z range of over 10 μm under nonoptimal imaging conditions. The algorithm is based on a two-dimensional cross correlation using fast Fourier transforms with computer-generated reference images, yielding a processing rate of up to 10,000 regions of interest per second. We implemented the technique in magnetic tweezers and tracked the 3D position of over 100 beads in real time on a generic CPU. The accuracy of 3D phasor tracking was extensively tested and compared to a look-up table approach using Lorenz-Mie simulations, avoiding experimental uncertainties. Its easy implementation, efficiency, and robustness can improve multiplexed biophysical bead-tracking applications, especially when high throughput is required and image artifacts are difficult to avoid.
Collapse
Affiliation(s)
- Thomas B Brouwer
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands
| | - Nicolaas Hermans
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands.
| |
Collapse
|