1
|
Zhong H, Elumalai S, Li C, Liu W, Dong S, Que Q. Development of high-throughput tissue culture-free plant transformation systems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17163. [PMID: 39652509 PMCID: PMC11711879 DOI: 10.1111/tpj.17163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
Efficient transformation systems are highly desirable for plant genetic research and biotechnology product development efforts. Tissue culture-free transformation (TCFT) and minimal tissue culture transformation (MTCT) systems have great potential in addressing genotype-dependency challenge, shortening transformation timeline, and improving operational efficiency by greatly reducing personnel and supply costs. The development of Arabidopsis floral dip transformation method almost 3 decades ago has greatly expedited plant genomic research. However, development of efficient TCFT or MTCT systems in non-Brassica species had limited success until recently despite the demonstration of successful in planta transformation in many plant species. In the last few years, there have been some major advances in the development of such systems in several crops using novel approaches. This article will review these new advances and discuss potential areas for further development.
Collapse
Affiliation(s)
- Heng Zhong
- Seeds ResearchSyngenta Crop Protection, LLC9 Davis DriveResearch Triangle ParkNorth Carolina27709USA
| | - Sivamani Elumalai
- Seeds ResearchSyngenta Crop Protection, LLC9 Davis DriveResearch Triangle ParkNorth Carolina27709USA
| | - Changbao Li
- Seeds ResearchSyngenta Crop Protection, LLC9 Davis DriveResearch Triangle ParkNorth Carolina27709USA
| | - Wei Liu
- Seeds ResearchSyngenta Crop Protection, LLC9 Davis DriveResearch Triangle ParkNorth Carolina27709USA
| | - Shujie Dong
- Seeds ResearchSyngenta Crop Protection, LLC9 Davis DriveResearch Triangle ParkNorth Carolina27709USA
| | - Qiudeng Que
- Seeds ResearchSyngenta Crop Protection, LLC9 Davis DriveResearch Triangle ParkNorth Carolina27709USA
| |
Collapse
|
2
|
Kumar S, Singh A, Bist CMS, Sharma M. Advancements in genetic techniques and functional genomics for enhancing crop traits and agricultural sustainability. Brief Funct Genomics 2024; 23:607-623. [PMID: 38679487 DOI: 10.1093/bfgp/elae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Genetic variability is essential for the development of new crop varieties with economically beneficial traits. The traits can be inherited from wild relatives or induced through mutagenesis. Novel genetic elements can then be identified and new gene functions can be predicted. In this study, forward and reverse genetics approaches were described, in addition to their applications in modern crop improvement programs and functional genomics. By using heritable phenotypes and linked genetic markers, forward genetics searches for genes by using traditional genetic mapping and allele frequency estimation. Despite recent advances in sequencing technology, omics and computation, genetic redundancy remains a major challenge in forward genetics. By analyzing close-related genes, we will be able to dissect their functional redundancy and predict possible traits and gene activity patterns. In addition to these predictions, sophisticated reverse gene editing tools can be used to verify them, including TILLING, targeted insertional mutagenesis, gene silencing, gene targeting and genome editing. By using gene knock-down, knock-up and knock-out strategies, these tools are able to detect genetic changes in cells. In addition, epigenome analysis and editing enable the development of novel traits in existing crop cultivars without affecting their genetic makeup by increasing epiallelic variants. Our understanding of gene functions and molecular dynamics of various biological phenomena has been revised by all of these findings. The study also identifies novel genetic targets in crop species to improve yields and stress tolerances through conventional and non-conventional methods. In this article, genetic techniques and functional genomics are specifically discussed and assessed for their potential in crop improvement.
Collapse
Affiliation(s)
- Surender Kumar
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Anupama Singh
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Chander Mohan Singh Bist
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla-171001, Himachal Pradesh, India
| | - Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Dharamshala-176215, Himachal Pradesh, India
| |
Collapse
|
3
|
Seem K, Kaur S, Kumar S, Mohapatra T. Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression. Crit Rev Biochem Mol Biol 2024; 59:69-98. [PMID: 38440883 DOI: 10.1080/10409238.2024.2320659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Traditionally, it has been believed that inheritance is driven as phenotypic variations resulting from changes in DNA sequence. However, this paradigm has been challenged and redefined in the contemporary era of epigenetics. The changes in DNA methylation, histone modification, non-coding RNA biogenesis, and chromatin remodeling play crucial roles in genomic functions and regulation of gene expression. More importantly, some of these changes are inherited to the next generations as a part of epigenetic memory and play significant roles in gene expression. The sum total of all changes in DNA bases, histone proteins, and ncRNA biogenesis constitutes the epigenome. Continuous progress in deciphering epigenetic regulations and the existence of heritable epigenetic/epiallelic variations associated with trait of interest enables to deploy epigenome editing tools to modulate gene expression. DNA methylation marks can be utilized in epigenome editing for the manipulation of gene expression. Initially, genome/epigenome editing technologies relied on zinc-finger protein or transcriptional activator-like effector protein. However, the discovery of clustered regulatory interspaced short palindromic repeats CRISPR)/deadCRISPR-associated protein 9 (dCas9) enabled epigenome editing to be more specific/efficient for targeted DNA (de)methylation. One of the major concerns has been the off-target effects, wherein epigenome editing may unintentionally modify gene/regulatory element which may cause unintended change/harmful effects. Moreover, epigenome editing of germline cell raises several ethical/safety issues. This review focuses on the recent developments in epigenome editing tools/techniques, technological limitations, and future perspectives of this emerging technology in therapeutics for human diseases as well as plant improvement to achieve sustainable developmental goals.
Collapse
Affiliation(s)
- Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Trilochan Mohapatra
- Protection of Plant Varieties and Farmers' Rights Authority, New Delhi, India
| |
Collapse
|
4
|
Miyamoto T, Toyooka K, Chuah JA, Odahara M, Higchi-Takeuchi M, Goto Y, Motoda Y, Kigawa T, Kodama Y, Numata K. A Synthetic Multidomain Peptide That Drives a Macropinocytosis-Like Mechanism for Cytosolic Transport of Exogenous Proteins into Plants. JACS AU 2022; 2:223-233. [PMID: 35098239 PMCID: PMC8790739 DOI: 10.1021/jacsau.1c00504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 05/28/2023]
Abstract
Direct delivery of proteins into plants represents a promising alternative to conventional gene delivery for probing and modulating cellular functions without the risk of random integration of transgenes into the host genome. This remains challenging, however, because of the lack of a protein delivery tool applicable to diverse plant species and the limited information about the entry mechanisms of exogenous proteins in plant cells. Here, we present the synthetic multidomain peptide (named dTat-Sar-EED4) for cytosolic protein delivery in various plant species via simple peptide-protein coincubation. dTat-Sar-EED4 enabled the cytosolic delivery of an active enzyme with up to ∼20-fold greater efficiency than previously described cell-penetrating peptides in several model plant systems. Our analyses using pharmacological inhibitors and transmission electron microscopy revealed that dTat-Sar-EED4 triggered a unique endocytic mechanism for cargo protein internalization. This endocytic mechanism shares several features with macropinocytosis, including the dependency of actin polymerization, sensitivity to phosphatidylinositol-3 kinase activity, and formation of membrane protrusions and large intracellular vesicles (>200 nm in diameter), even though macropinocytosis has not been identified to date in plants. Our study thus presents a robust molecular tool that can induce a unique cellular uptake mechanism for the efficient transport of bioactive proteins into plants.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Kiminori Toyooka
- Technology
Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center
for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Jo-Ann Chuah
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Masaki Odahara
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Mieko Higchi-Takeuchi
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Yumi Goto
- Technology
Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center
for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Yoko Motoda
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- Laboratory
for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics
Research, Yokohama 230-0045, Japan
| | - Takanori Kigawa
- Laboratory
for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics
Research, Yokohama 230-0045, Japan
| | - Yutaka Kodama
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan
| | - Keiji Numata
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
5
|
Huang CY, Jin H. Coordinated Epigenetic Regulation in Plants: A Potent Managerial Tool to Conquer Biotic Stress. FRONTIERS IN PLANT SCIENCE 2022; 12:795274. [PMID: 35046981 PMCID: PMC8762163 DOI: 10.3389/fpls.2021.795274] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Plants have evolved variable phenotypic plasticity to counteract different pathogens and pests during immobile life. Microbial infection invokes multiple layers of host immune responses, and plant gene expression is swiftly and precisely reprogramed at both the transcriptional level and post-transcriptional level. Recently, the importance of epigenetic regulation in response to biotic stresses has been recognized. Changes in DNA methylation, histone modification, and chromatin structures have been observed after microbial infection. In addition, epigenetic modifications may be preserved as transgenerational memories to allow the progeny to better adapt to similar environments. Epigenetic regulation involves various regulatory components, including non-coding small RNAs, DNA methylation, histone modification, and chromatin remodelers. The crosstalk between these components allows precise fine-tuning of gene expression, giving plants the capability to fight infections and tolerant drastic environmental changes in nature. Fully unraveling epigenetic regulatory mechanisms could aid in the development of more efficient and eco-friendly strategies for crop protection in agricultural systems. In this review, we discuss the recent advances on the roles of epigenetic regulation in plant biotic stress responses.
Collapse
Affiliation(s)
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
6
|
Kakoulidou I, Avramidou EV, Baránek M, Brunel-Muguet S, Farrona S, Johannes F, Kaiserli E, Lieberman-Lazarovich M, Martinelli F, Mladenov V, Testillano PS, Vassileva V, Maury S. Epigenetics for Crop Improvement in Times of Global Change. BIOLOGY 2021; 10:766. [PMID: 34439998 PMCID: PMC8389687 DOI: 10.3390/biology10080766] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-Dimitra (ELGO-DIMITRA), 11528 Athens, Greece;
| | - Miroslav Baránek
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Sophie Brunel-Muguet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, UNICAEN, INRAE, Normandie Université, CEDEX, F-14032 Caen, France;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, National University of Ireland (NUI) Galway, H91 TK33 Galway, Ireland;
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
- Institute for Advanced Study, Technical University of Munich, Lichtenberg Str. 2a, 85748 Garching, Germany
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas Margarita Salas-(CIB-CSIC), Ramiro Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE, EA1207 USC1328, Université d’Orléans, F-45067 Orléans, France
| |
Collapse
|
7
|
Nuccio ML, Claeys H, Heyndrickx KS. CRISPR-Cas technology in corn: a new key to unlock genetic knowledge and create novel products. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:11. [PMID: 37309473 PMCID: PMC10236071 DOI: 10.1007/s11032-021-01200-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 06/14/2023]
Abstract
Since its inception in 2012, CRISPR-Cas technologies have taken the life science community by storm. Maize genetics research is no exception. Investigators around the world have adapted CRISPR tools to advance maize genetics research in many ways. The principle application has been targeted mutagenesis to confirm candidate genes identified using map-based methods. Researchers are also developing tools to more effectively apply CRISPR-Cas technologies to maize because successful application of CRISPR-Cas relies on target gene identification, guide RNA development, vector design and construction, CRISPR-Cas reagent delivery to maize tissues, and plant characterization, each contributing unique challenges to CRISPR-Cas efficacy. Recent advances continue to chip away at major barriers that prevent more widespread use of CRISPR-Cas technologies in maize, including germplasm-independent delivery of CRISPR-Cas reagents and production of high-resolution genomic data in relevant germplasm to facilitate CRISPR-Cas experimental design. This has led to the development of novel breeding tools to advance maize genetics and demonstrations of how CRISPR-Cas technologies might be used to enhance maize germplasm. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01200-9.
Collapse
|
8
|
Nalapalli S, Tunc-Ozdemir M, Sun Y, Elumalai S, Que Q. Morphogenic Regulators and Their Application in Improving Plant Transformation. Methods Mol Biol 2021; 2238:37-61. [PMID: 33471323 DOI: 10.1007/978-1-0716-1068-8_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Generation of plant lines with transgene or edited gene variants is the desired outcome of transformation technology. Conventional DNA-based plant transformation methods are the most commonly used technology but these approaches are limited to a small number of plant species with efficient transformation systems. The ideal transformation technologies are those that allow biotechnology applications across wide genetic background, especially within elite germplasm of major crop species. This chapter will briefly review key regulatory genes involved in plant morphogenesis with a focus on in vitro somatic embryogenesis and their application in improving plant transformation.
Collapse
Affiliation(s)
- Samson Nalapalli
- Seeds Research, Syngenta Crop Protection LLC, Research Triangle Park, NC, USA.
| | | | - Yuejin Sun
- Seeds Research, Syngenta Crop Protection LLC, Research Triangle Park, NC, USA
| | - Sivamani Elumalai
- Seeds Research, Syngenta Crop Protection LLC, Research Triangle Park, NC, USA
| | - Qiudeng Que
- Seeds Research, Syngenta Crop Protection LLC, Research Triangle Park, NC, USA
| |
Collapse
|
9
|
Tsanova T, Stefanova L, Topalova L, Atanasov A, Pantchev I. DNA-free gene editing in plants: a brief overview. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1858159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Tsveta Tsanova
- Department of Biochemistry, Faculty of Biology, Sofia University, Sofia, Bulgaria
| | - Lidia Stefanova
- Department of Biochemistry, Faculty of Biology, Sofia University, Sofia, Bulgaria
| | - Lora Topalova
- Department of Biochemistry, Faculty of Biology, Sofia University, Sofia, Bulgaria
| | | | - Ivelin Pantchev
- Department of Biochemistry, Faculty of Biology, Sofia University, Sofia, Bulgaria
- Joint Genomic Center Ltd, Sofia, Bulgaria
| |
Collapse
|
10
|
Particle bombardment technology and its applications in plants. Mol Biol Rep 2020; 47:9831-9847. [PMID: 33222118 DOI: 10.1007/s11033-020-06001-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Particle bombardment, or biolistics, has emerged as an excellent alternative approach for plant genetic transformation which circumvents the limitations of Agrobacterium-mediated genetic transformation. The method has no biological constraints and can transform a wide range of plant species. Besides, it has been the most efficient way to achieve organelle transformation (for both chloroplasts and mitochondria) so far. Along with the recent advances in genome editing technologies, conventional gene delivery tools are now being repurposed to deliver targeted gene editing reagents into the plants. One of the key advantages is that the particle bombardment allows DNA-free gene editing of the genome. It enables the direct delivery of proteins, RNAs, and RNPs into plants. Owing to the versatility and wide-range applicability of the particle bombardment, it will likely remain one of the major genetic transformation methods in the future. This article provides an overview of the current status of particle bombardment technology and its applications in the field of plant research and biotechnology.
Collapse
|
11
|
Gallego-Bartolomé J. DNA methylation in plants: mechanisms and tools for targeted manipulation. THE NEW PHYTOLOGIST 2020; 227:38-44. [PMID: 32159848 DOI: 10.1111/nph.16529] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/19/2020] [Indexed: 05/23/2023]
Abstract
DNA methylation is an epigenetic mark that regulates multiple processes, such as gene expression and genome stability. Mutants and pharmacological treatments have been instrumental in the study of this mark in plants, although their genome-wide effect complicates the direct association between changes in methylation and a particular phenotype. A variety of tools that allow locus-specific manipulation of DNA methylation can be used to assess its direct role in specific processes, as well as to create novel epialleles. Recently, new tools that recruit the methylation machinery directly to target loci through programmable DNA-binding proteins have expanded the tool kit available to researchers. This review provides an overview of DNA methylation in plants and discusses the tools that have recently been developed for its manipulation.
Collapse
Affiliation(s)
- Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de Valencia, 46011, Valencia, Spain
| |
Collapse
|
12
|
Martin SL, Parent JS, Laforest M, Page E, Kreiner JM, James T. Population Genomic Approaches for Weed Science. PLANTS (BASEL, SWITZERLAND) 2019; 8:E354. [PMID: 31546893 PMCID: PMC6783936 DOI: 10.3390/plants8090354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
Genomic approaches are opening avenues for understanding all aspects of biological life, especially as they begin to be applied to multiple individuals and populations. However, these approaches typically depend on the availability of a sequenced genome for the species of interest. While the number of genomes being sequenced is exploding, one group that has lagged behind are weeds. Although the power of genomic approaches for weed science has been recognized, what is needed to implement these approaches is unfamiliar to many weed scientists. In this review we attempt to address this problem by providing a primer on genome sequencing and provide examples of how genomics can help answer key questions in weed science such as: (1) Where do agricultural weeds come from; (2) what genes underlie herbicide resistance; and, more speculatively, (3) can we alter weed populations to make them easier to control? This review is intended as an introduction to orient weed scientists who are thinking about initiating genome sequencing projects to better understand weed populations, to highlight recent publications that illustrate the potential for these methods, and to provide direction to key tools and literature that will facilitate the development and execution of weed genomic projects.
Collapse
Affiliation(s)
- Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Jean-Sebastien Parent
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada.
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada.
| | - Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|