1
|
van Wegberg AMJ, MacDonald A, Ahring K, Bélanger-Quintana A, Beblo S, Blau N, Bosch AM, Burlina A, Campistol J, Coşkun T, Feillet F, Giżewska M, Huijbregts SC, Leuzzi V, Maillot F, Muntau AC, Rocha JC, Romani C, Trefz F, van Spronsen FJ. European guidelines on diagnosis and treatment of phenylketonuria: First revision. Mol Genet Metab 2025; 145:109125. [PMID: 40378670 DOI: 10.1016/j.ymgme.2025.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/19/2025]
Abstract
Phenylketonuria (PKU) is an autosomal recessive inherited disorder of phenylalanine metabolism caused by deficiency of the enzyme phenylalanine hydroxylase that converts phenylalanine into tyrosine. Untreated, PKU results in elevated phenylalanine levels in blood and brain, which cause severe intellectual disability, epilepsy and behavioural problems. For this first revision of the European PKU Guidelines previous recommendations were re-evaluated and updated according to new research findings. Twenty-one professionals were divided across four working groups and supported by a coordinator and chair. In addition to an update of the previous 70 recommendations, 20 new topics were included, resulting in a total of 87 statements in this first revision of the guidelines. Research publications were reviewed up until September 2022. Evidence was graded as high, moderate, low, very low or expert opinion and the recommendations were graded conditional or strong according to GRADE methodology. All recommendations were discussed during 14 plenary online or in person meetings. Recommendations were accepted if more than 75 % of the professionals were in agreement. When recommendations were not amended, the text reported in the European guidelines of 2017 remains valid.
Collapse
Affiliation(s)
- A M J van Wegberg
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, the Netherlands.
| | - A MacDonald
- Dietetic Department, Birmingham Children's Hospital, Birmingham, UK.
| | - K Ahring
- PKU clinic, Center for Inherited Metabolic Diseases, Copenhagen University Hospital, Denmark.
| | - A Bélanger-Quintana
- Metabolic Diseases Unit, Department of Paediatrics, Hospital Ramon y Cajal Madrid, Madrid, Spain.
| | - S Beblo
- Department of Women and Child Health, Center for Rare Diseases, Leipzig University Medical Center, Leipzig, Germany.
| | - N Blau
- Divisions of Metabolism, University Children's Hospital, Zürich, Switzerland.
| | - A M Bosch
- Amsterdam UMC, location University of Amsterdam, Emma Childrens' Hospital, Department of Pediatrics, Division of Metabolic Diseases, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands.
| | - A Burlina
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, University Hospital Padova, Italy.
| | - J Campistol
- Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain.
| | - T Coşkun
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - F Feillet
- Pediatric Unit, Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France.
| | - M Giżewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - S C Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, the Netherlands.
| | - V Leuzzi
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.
| | - F Maillot
- CHRU De Tours, Internal Medicine department, Reference center for inherited metabolic diseases, INSERM U1253 "iBraiN", University of Tours, Tours, France.
| | - A C Muntau
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, and German Center of Child and Adolescent Health (DZKJ), Hamburg, Germany.
| | - J C Rocha
- Nutrition and Metabolism, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; Reference Centre of Inherited Metabolic Diseases, Unidade Local de Saúde São José, 1169-045 Lisboa, Portugal; Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS), NOVA Medical School (NMS), Faculdade de Ciências Médicas, (FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; Comprehensive Health Research Centre (CHRC), NOVA Medical School, (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | - C Romani
- College of Health and Life Sciences, Psychology Department, Aston University, UK.
| | - F Trefz
- Center for Metabolic Diseases Tuebingen, Paul-Ehrlich-Straße 23, 72076 Tübingen, Germany.
| | - F J van Spronsen
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, the Netherlands.
| |
Collapse
|
2
|
Woodard J, Zheng W, Zhang Y. Protein structural features predict responsiveness to pharmacological chaperone treatment for three lysosomal storage disorders. PLoS Comput Biol 2021; 17:e1009370. [PMID: 34529671 PMCID: PMC8478239 DOI: 10.1371/journal.pcbi.1009370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/28/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional structures of proteins can provide important clues into the efficacy of personalized treatment. We perform a structural analysis of variants within three inherited lysosomal storage disorders, comparing variants responsive to pharmacological chaperone treatment to those unresponsive to such treatment. We find that predicted ΔΔG of mutation is higher on average for variants unresponsive to treatment, in the case of datasets for both Fabry disease and Pompe disease, in line with previous findings. Using both a single decision tree and an advanced machine learning approach based on the larger Fabry dataset, we correctly predict responsiveness of three Gaucher disease variants, and we provide predictions for untested variants. Many variants are predicted to be responsive to treatment, suggesting that drug-based treatments may be effective for a number of variants in Gaucher disease. In our analysis, we observe dependence on a topological feature reporting on contact arrangements which is likely connected to the order of folding of protein residues, and we provide a potential justification for this observation based on steady-state cellular kinetics. Pharmacological chaperones are small molecule drugs that bind to proteins to help stabilize the folded state. One set of diseases for which this treatment has been effective is the lysosomal storage disorders, which are caused by defective lysosomal enzymes. However, not all genotypes are equally responsive to treatment. For instance, missense mutants that are particularly destabilized relative to WT are less likely to respond. The availability of datasets containing responsiveness data for large numbers of mutants, along with crystal structures of the protein involved in each disease, make machine learning methods incorporating sequence-based and structural data feasible. We hypothesize that data from two diseases, Fabry and Pompe disease, may be useful for predicting responsiveness of variants in the related Gaucher disease. Results suggest that many rare variants in Gaucher disease could be amenable to existing drugs. Results also suggest that drug responsiveness depends on protein topology in such a way that mutations in early-to-fold residues are more likely to be non-responsive to pharmacological chaperone treatment, which is consistent with a simple kinetic model of stability rescue. This study provides an example of how machine learning can be used to inform further studies towards personalized treatment in medicine.
Collapse
Affiliation(s)
- Jaie Woodard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
3
|
Lopes RR, Tomé CS, Russo R, Paterna R, Leandro J, Candeias NR, Gonçalves LMD, Teixeira M, Sousa PMF, Guedes RC, Vicente JB, Gois PMP, Leandro P. Modulation of Human Phenylalanine Hydroxylase by 3-Hydroxyquinolin-2(1H)-One Derivatives. Biomolecules 2021; 11:biom11030462. [PMID: 33808760 PMCID: PMC8003416 DOI: 10.3390/biom11030462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/08/2021] [Accepted: 03/13/2021] [Indexed: 01/14/2023] Open
Abstract
Phenylketonuria (PKU) is a genetic disease caused by deficient activity of human phenylalanine hydroxylase (hPAH) that, when untreated, can lead to severe psychomotor impairment. Protein misfolding is recognized as the main underlying pathogenic mechanism of PKU. Therefore, the use of stabilizers of protein structure and/or activity is an attractive therapeutic strategy for this condition. Here, we report that 3-hydroxyquinolin-2(1H)-one derivatives can act as protectors of hPAH enzyme activity. Electron paramagnetic resonance spectroscopy demonstrated that the 3-hydroxyquinolin-2(1H)-one compounds affect the coordination of the non-heme ferric center at the enzyme active-site. Moreover, surface plasmon resonance studies showed that these stabilizing compounds can be outcompeted by the natural substrate l-phenylalanine. Two of the designed compounds functionally stabilized hPAH by maintaining protein activity. This effect was observed on the recombinant purified protein and in a cellular model. Besides interacting with the catalytic iron, one of the compounds also binds to the N-terminal regulatory domain, although to a different location from the allosteric l-Phe binding site, as supported by the solution structures obtained by small-angle X-ray scattering.
Collapse
Affiliation(s)
- Raquel R. Lopes
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
| | - Catarina S. Tomé
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
- Instituto de Biologia Experimental e Tecnológica, Quinta do Marquês, 2780-155 Oeiras, Portugal;
| | - Roberto Russo
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
| | - Roberta Paterna
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
| | - João Leandro
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
| | - Nuno R. Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland;
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lídia M. D. Gonçalves
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
| | - Pedro M. F. Sousa
- Instituto de Biologia Experimental e Tecnológica, Quinta do Marquês, 2780-155 Oeiras, Portugal;
| | - Rita C. Guedes
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
- Correspondence: (J.B.V.); (P.M.P.G.); (P.L.); Tel.: +351-217946400 (P.L.)
| | - Pedro M. P. Gois
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
- Correspondence: (J.B.V.); (P.M.P.G.); (P.L.); Tel.: +351-217946400 (P.L.)
| | - Paula Leandro
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.R.L.); (C.S.T.); (R.R.); (R.P.); (J.L.); (L.M.D.G.); (R.C.G.)
- Correspondence: (J.B.V.); (P.M.P.G.); (P.L.); Tel.: +351-217946400 (P.L.)
| |
Collapse
|
4
|
Suzuki Y. Chaperone therapy for molecular pathology in lysosomal diseases. Brain Dev 2021; 43:45-54. [PMID: 32736903 DOI: 10.1016/j.braindev.2020.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
In lysosomal diseases, enzyme deficiency is caused by misfolding of mutant enzyme protein with abnormal steric structure that is expressed by gene mutation. Chaperone therapy is a new molecular therapeutic approach primarily for lysosomal diseases. The misfolded mutant enzyme is digested rapidly or aggregated to induce endoplasmic reticulum stress. As a result, the catalytic activity is lost. The following sequence of events results in chaperone therapy to achieve correction of molecular pathology. An orally administered low molecular competitive inhibitor (chaperone) is absorbed into the bloodstream and reaches the target cells and tissues. The mutant enzyme is stabilized by the chaperone and subjected to normal enzyme proteinfolding (proteostasis). The first chaperone drug was developed for Fabry disease and is currently available in medical practice. At present three types of chaperones are available: competitive chaperone with enzyme inhibitory bioactivity (exogenous), non-competitive (or allosteric) chaperone without inhibitory bioactivity (exogenous), and molecular chaperone (heat shock protein; endogenous). The third endogenous chaperone would be directed to overexpression or activated by an exogenous low-molecular inducer. This new molecular therapeutic approach, utilizing the three types of chaperone, is expected to apply to a variety of diseases, genetic or non-genetic, and neurological or non-neurological, in addition to lysosomal diseases.
Collapse
|
5
|
Brennecke P, Rasina D, Aubi O, Herzog K, Landskron J, Cautain B, Vicente F, Quintana J, Mestres J, Stechmann B, Ellinger B, Brea J, Kolanowski JL, Pilarski R, Orzaez M, Pineda-Lucena A, Laraia L, Nami F, Zielenkiewicz P, Paruch K, Hansen E, von Kries JP, Neuenschwander M, Specker E, Bartunek P, Simova S, Leśnikowski Z, Krauss S, Lehtiö L, Bilitewski U, Brönstrup M, Taskén K, Jirgensons A, Lickert H, Clausen MH, Andersen JH, Vicent MJ, Genilloud O, Martinez A, Nazaré M, Fecke W, Gribbon P. EU-OPENSCREEN: A Novel Collaborative Approach to Facilitate Chemical Biology. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:398-413. [PMID: 30616481 PMCID: PMC6764006 DOI: 10.1177/2472555218816276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022]
Abstract
Compound screening in biological assays and subsequent optimization of hits is indispensable for the development of new molecular research tools and drug candidates. To facilitate such discoveries, the European Research Infrastructure EU-OPENSCREEN was founded recently with the support of its member countries and the European Commission. Its distributed character harnesses complementary knowledge, expertise, and instrumentation in the discipline of chemical biology from 20 European partners, and its open working model ensures that academia and industry can readily access EU-OPENSCREEN's compound collection, equipment, and generated data. To demonstrate the power of this collaborative approach, this perspective article highlights recent projects from EU-OPENSCREEN partner institutions. These studies yielded (1) 2-aminoquinazolin-4(3 H)-ones as potential lead structures for new antimalarial drugs, (2) a novel lipodepsipeptide specifically inducing apoptosis in cells deficient for the pVHL tumor suppressor, (3) small-molecule-based ROCK inhibitors that induce definitive endoderm formation and can potentially be used for regenerative medicine, (4) potential pharmacological chaperones for inborn errors of metabolism and a familiar form of acute myeloid leukemia (AML), and (5) novel tankyrase inhibitors that entered a lead-to-candidate program. Collectively, these findings highlight the benefits of small-molecule screening, the plethora of assay designs, and the close connection between screening and medicinal chemistry within EU-OPENSCREEN.
Collapse
Affiliation(s)
- Philip Brennecke
- EU-OPENSCREEN, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Dace Rasina
- Organic Synthesis Methodology Group,
Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Oscar Aubi
- Department of Biomedicine, University of
Bergen, Bergen, Norway
| | - Katja Herzog
- EU-OPENSCREEN, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Johannes Landskron
- Centre for Molecular Medicine
Norway–Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Bastien Cautain
- Fundación MEDINA, Health Sciences
Technology Park, Granada, Spain
| | | | - Jordi Quintana
- Department of Experimental and Health
Sciences, Universitat Pompeu Fabra, Barcelona, Catalunya, Spain
| | - Jordi Mestres
- Department of Experimental and Health
Sciences, Universitat Pompeu Fabra, Barcelona, Catalunya, Spain
- IMIM Hospital del Mar Medical Research
Institute, Research Program on Biomedical Informatics (GRIB), Barcelona, Spain
| | - Bahne Stechmann
- EU-OPENSCREEN, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular
Biology and Applied Ecology IME, Screening Port, Hamburg, Germany
| | - Jose Brea
- Institute for Research in Molecular
Medicine and Chronic Diseases—BioFarma Research Group, University of Santiago de
Compostela, Santiago de Compostela, Spain
| | - Jacek L. Kolanowski
- Department of Molecular Probes and
Prodrugs, Institute of Bioorganic Chemistry—Polish Academy of Sciences, Poznan,
Poland
| | - Radosław Pilarski
- Department of Molecular Probes and
Prodrugs, Institute of Bioorganic Chemistry—Polish Academy of Sciences, Poznan,
Poland
| | - Mar Orzaez
- Screening Platform, Principe Felipe
Research Center, Valencia, Spain
| | | | - Luca Laraia
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Lyngby,
Denmark
- Technical University of Denmark,
DK-OPENSCREEN, Lyngby, Denmark
| | - Faranak Nami
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Lyngby,
Denmark
- Technical University of Denmark,
DK-OPENSCREEN, Lyngby, Denmark
| | - Piotr Zielenkiewicz
- Department of Bioinformatics,
Institute of Biochemistry and Biophysics—Polish Academy of Sciences, Warsaw,
Poland
| | - Kamil Paruch
- Department of Chemistry—CZ-OPENSCREEN,
Masaryk University, Brno, Czech Republic
| | - Espen Hansen
- The Arctic University of Norway,
University of Tromsø, Marbio, Tromsø, Norway
| | - Jens P. von Kries
- Screening Unit, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Martin Neuenschwander
- Screening Unit, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Edgar Specker
- Medicinal Chemistry Research Group,
Leibniz Research Institute for Molecular Pharmacology, Berlin, Germany
| | - Petr Bartunek
- Institute of Molecular Genetics of the
ASCR, CZ-OPENSCREEN, Prague, Czech Republic
| | - Sarka Simova
- Institute of Molecular Genetics of the
ASCR, CZ-OPENSCREEN, Prague, Czech Republic
| | - Zbigniew Leśnikowski
- Laboratory of Molecular Virology and
Biological Chemistry, Institute of Medical Biology—Polish Academy of Sciences, Łódź,
Poland
| | - Stefan Krauss
- Department of Immunology and
Transfusion Medicine, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub—Centre of
Excellence—Institute of Basic Medical Sciences, University of Oslo, Oslo,
Norway
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular
Medicine—Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ursula Bilitewski
- Working Group Compound Profiling and
Screening, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Mark Brönstrup
- Department of Chemical Biology,
Helmholtz Centre for Infection Research, Brunswick, Germany
- German Center for Infection Research
(DZIF), partner site Hannover-Brunswick, Brunswick, Germany
| | - Kjetil Taskén
- Centre for Molecular Medicine
Norway–Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Cancer
Immunology—Institute for Cancer Research, Oslo University Hospital, Oslo,
Norway
- K.G. Jebsen Centre for Cancer
Immunotherapy—Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for B Cell
Malignancies—Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aigars Jirgensons
- Organic Synthesis Methodology Group,
Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Heiko Lickert
- Institute of Diabetes and Regeneration
Research, Helmholtz Centre Munich German Research Center for Environmental Health,
Neuherberg, Germany
| | - Mads H. Clausen
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Lyngby,
Denmark
- Technical University of Denmark,
DK-OPENSCREEN, Lyngby, Denmark
| | | | - Maria J. Vicent
- Screening Platform, Principe Felipe
Research Center, Valencia, Spain
| | - Olga Genilloud
- Fundación MEDINA, Health Sciences
Technology Park, Granada, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of
Bergen, Bergen, Norway
| | - Marc Nazaré
- Medicinal Chemistry Research Group,
Leibniz Research Institute for Molecular Pharmacology, Berlin, Germany
| | | | - Philip Gribbon
- Fraunhofer Institute for Molecular
Biology and Applied Ecology IME, Screening Port, Hamburg, Germany
| |
Collapse
|