1
|
Li S, Li J, Chen G, Lin T, Zhang P, Tong K, Chen N, Liu S. Exosomes originating from neural stem cells undergoing necroptosis participate in cellular communication by inducing TSC2 upregulation of recipient cells following spinal cord injury. Neural Regen Res 2025; 20:3273-3286. [PMID: 38993124 PMCID: PMC11881710 DOI: 10.4103/nrr.nrr-d-24-00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00030/figure1/v/2024-12-20T164640Z/r/image-tiff We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury. While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function, their precise function in spinal cord injury remains unclear. To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury, we conducted single-cell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury. Subsequently, we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes. The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes. Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs, 104 long non-coding RNAs, 720 circular RNAs, and 14 microRNAs compared with the control group. Construction of a competing endogenous RNA network identified the following hub genes: tuberous sclerosis 2 ( Tsc2 ), solute carrier family 16 member 3 ( Slc16a3 ), and forkhead box protein P1 ( Foxp1 ). Notably, a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury. TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone. Furthermore, in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells. Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways. In addition, Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways. Collectively, these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.
Collapse
Affiliation(s)
- Shiming Li
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Jianfeng Li
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Guoliang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Tao Lin
- Department of Orthopedics and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Penghui Zhang
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Kuileung Tong
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ningning Chen
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Shaoyu Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Wang L, Wu X, Mou J, Ren L, Wu B, Xiang G, Wang J, Xie D, Guo M, Geng Y, An B, Huang S. Non-invasive prenatal detection of dominant single-gene disorders in fetal structural abnormalities: a clinical feasibility study. Arch Gynecol Obstet 2024; 310:2943-2955. [PMID: 39549115 DOI: 10.1007/s00404-024-07800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVE This study evaluated the accuracy of non-invasive prenatal testing (NIPT-SGDs) for dominant monogenic genetic diseases associated with fetal structural abnormalities and to assess the feasibility of clinical application. METHODS Pregnant women requiring prenatal diagnosis due to fetal structural abnormalities were enrolled. Maternal peripheral blood was analyzed for cell-free DNA (cfDNA) using coordinative allele-aware target enrichment sequencing (COATE-seq). This assessed fetal allele depth distribution, fraction and variation ratio. The variation's origin was then determined to obtain fetal variation information. Finally, NIPT-SGDs results were confirmed via invasive prenatal diagnosis (IPD). RESULTS Upon examination of 113 samples using NIPT-SGDs, COATE-seq successfully analyzed 112 for fetal variation, excluding one due to hemolysis. The study detected six positive cases, yielding a 5.36% detection rate. These disorders included tuberous sclerosis complex (TSC1 and TSC2 being its causative genes), Noonan syndrome (PTPN11), polycystic kidney disease (PKD1), and Kabuki syndrome (KMT2D), occurring twice each, except for Noonan and polycystic kidney disease. Two false positives were due to the mother being a genetic mosaicism. Compared to invasive whole-exome sequencing (WES), NIPT-SGDs did not detect nine positive cases of IPD dominant monogenic diseases, accurately identifying 90.18% (101/112) of the actual positive and negative cases. CONCLUSION Our findings demonstrate the clinical utility of NIPT-SGDs using COATE-seq in effectively identifying fetuses with dominant single-gene disorders. Furthermore, this method can be applied to all fetuses.
Collapse
Affiliation(s)
- Lei Wang
- School of Medicine, Guizhou University, Guiyang, 550002, China
| | - Xiaoli Wu
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, 83 Zhongshan East Rd., Guiyang, 550002, China
| | - Jing Mou
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, 83 Zhongshan East Rd., Guiyang, 550002, China
| | - Lingyan Ren
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, 83 Zhongshan East Rd., Guiyang, 550002, China
| | - Bei Wu
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, 83 Zhongshan East Rd., Guiyang, 550002, China
| | - Guangxin Xiang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jue Wang
- Obstetrics Prenatal Diagnosis Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650010, Yunnan, China
| | - Dan Xie
- School of Medicine, Guizhou University, Guiyang, 550002, China
| | - Min Guo
- School of Medicine, Guizhou University, Guiyang, 550002, China
| | - Yaya Geng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Bangquan An
- School of Medicine, Guizhou University, Guiyang, 550002, China
- Department of Blood Transfusion, Guizhou Provincial People's Hospital, 83 Zhongshan East Rd., Guiyang, 550002, China
| | - Shengwen Huang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, 83 Zhongshan East Rd., Guiyang, 550002, China.
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
3
|
Balasubramanian V, Saravanan R, Balamurugan SSS, Rajendran S, Joseph LD, Dev B, Srinivasan B, Balunathan N, Shanmugasundaram G, Gopisetty G, Ganesan K, Rayala SK, Venkatraman G. Genetic alteration of mRNA editing enzyme APOBEC3B in the pathogenesis of ovarian endometriosis. Reprod Biomed Online 2024; 49:104111. [PMID: 39197402 DOI: 10.1016/j.rbmo.2024.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/24/2024] [Accepted: 05/09/2024] [Indexed: 09/01/2024]
Abstract
RESEARCH QUESTION What are the specific genetic alterations and associated network in endometriotic cells responsible for the disease pathogenesis? DESIGN Case control experimental study involving 45 women with endometriosis who underwent laparoscopic surgery (case) and 45 normal samples from women undergoing total abdominal hysterectomy (control). The endometrial samples were subjected to whole exome sequencing (WES) of endometriotic tissue and copy number variation analysis. Validation of gene hits were obtained from WES using polymerase chain reaction techniques, immunological techniques, in-silico tools and transgenic cell line models. RESULTS Germline heterozygous deletion of mRNA editing enzyme subunit APOBEC3B was identified in about 96% of endometriosis samples. The presence of germline deletion was confirmed with blood, endometrium and normal ovary samples obtained from the same patient. APOBEC3B deletions resulted in a hybrid protein that activates A1CF. APOBEC3B deletion can be a major cause of changes in the endometriotic microenvironment, and contributes to the pathogenesis and manifestation of the disease. The effect of APOBEC3B deletion was proved by in-vitro experiments in a cell line model, which displayed endometriosis-like characteristics. APOBEC3B germline deletion plays a major role in the pathogenesis of endometriosis, which is evident by the activation of A1CF, an increase in epithelial to mesenchymal transition, cellular proliferation, inflammation markers and a decrease in apoptosis markers. CONCLUSION The deleterious effects caused by APOBEC3B deletion in endometriosis were identified and confirmed. These results might provide a base for identifying the complete pathogenetic mechanism of endometriosis, thereby moving a step closer to better diagnosis and treatment options.
Collapse
Affiliation(s)
- Vaishnavi Balasubramanian
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | - Roshni Saravanan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | - Srikanth Swamy Swaroop Balamurugan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | - Swetha Rajendran
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | - Leena Dennis Joseph
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Bhawna Dev
- Department of Radiology, Sri Ramachandra Medical College Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Bhuvana Srinivasan
- Department of Obstetrics and Gynecology, Sri Ramachandra Medical College Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600095, India
| | - Nandhini Balunathan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | | | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute (W.I.A), Adayar, Chennai, 600036, India
| | - Kumaresan Ganesan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India..
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences & Technology, Vellore Institute of Technology Vellore, Vellore, 632014, India..
| |
Collapse
|
4
|
Zou W, Fang Z, Feng Y, Gong S, Li Z, Li M, Sun Y, Ruan X, Fang X, Qu H, Li H. Transcriptomic and genomic characteristics of intrahepatic metastases of primary liver cancer. BMC Cancer 2024; 24:672. [PMID: 38824541 PMCID: PMC11144329 DOI: 10.1186/s12885-024-12428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Patients with primary multifocal hepatocellular carcinoma (HCC) have a poor prognosis and often experience a high rate of treatment failure. Multifocal HCC is mainly caused by intrahepatic metastasis (IM), and though portal vein tumor thrombosis (PVTT) is considered a hallmark of IM, the molecular mechanism by which primary HCC cells invade the portal veins remains unclear. Therefore, it is necessary to recognize the early signs of metastasis of HCC to arrange better treatment for patients. RESULTS To determine the differential molecular features between primary HCC with and without phenotype of metastasis, we used the CIBERSORTx software to deconvolute cell types from bulk RNA-Seq based on a single-cell transcriptomic dataset. According to the relative abundance of tumorigenic and metastatic hepatoma cells, VEGFA+ macrophages, effector memory T cells, and natural killer cells, HCC samples were divided into five groups: Pro-T, Mix, Pro-Meta, NKC, and MemT, and the transcriptomic and genomic features of the first three groups were analyzed. We found that the Pro-T group appeared to retain native hepatic metabolic activity, whereas the Pro-Meta group underwent dedifferentiation. Genes highly expressed in the group Pro-Meta often signify a worse outcome. CONCLUSIONS The HCC cohort can be well-typed and prognosis predicted according to tumor microenvironment components. Primary hepatocellular carcinoma may have obtained corresponding molecular features before metastasis occurred.
Collapse
Affiliation(s)
- Weilong Zou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhanjie Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Feng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shangjin Gong
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziqiang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Meng Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Sun
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiuyan Ruan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hongzhu Qu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Haiyang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
5
|
Qin GL, Fu CM, Tang F, Yin J, Guan DL, Shi CY. Population genomics analysis reveals footprints of selective breeding in a rapid-growth variety of Paulownia fortunei with apical dominance. Genomics 2024; 116:110849. [PMID: 38679345 DOI: 10.1016/j.ygeno.2024.110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Paulownia fortunei is an ecologically and economically valuable tree cultivated for its rapid growth and high-quality timber. To enhance Paulownia germplasm, we have developed the elite variety QingT with patented advantages in growth rate and apical dominance. To illuminate the genetic basis of QingT's superior traits, here we harness comparative population genomics to analyze genomic variation patterns between QingT and common Paulownia. We performed whole-genome re-sequencing of 30 QingT and 30 common samples, detecting 15.6 million SNPs and 2.6 million indels. Phylogeny and population structure analyses robustly partitioned common and QingT into distinct groups which indicate robust genome stabilization. QingT exhibited reduced heterozygosity and linkage disequilibrium decay compared to common Paulownia, reflecting high recombination, indicating hybridizing effects with common white-flowered string is the source of its patented advantages. Genome selection scans uncovered 25 regions of 169 genes with elevated nucleotide diversity, indicating selection sweeps among groups. Functional analysis of sweep genes revealed upregulation of ribosomal, biosynthesis, and growth pathways in QingT, implicating enhanced protein production and developmental processes in its rapid growth phenotype. This study's insights comprehensively chart genomic variation during Paulownia breeding, localizing candidate loci governing agronomic traits, and underpinnings of future molecular breeding efforts to boost productivity.
Collapse
Affiliation(s)
- Guo-Le Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Chuan-Ming Fu
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China
| | - Fan Tang
- Qingtong Advanced Technology Integration Innovation Promotion Center, Qinzhou 535000, China
| | - Jian Yin
- Qingtong Advanced Technology Integration Innovation Promotion Center, Qinzhou 535000, China
| | - De-Long Guan
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China.
| | - Chen-Yu Shi
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China.
| |
Collapse
|
6
|
Wei J, Wu BJ, Daoud SS. Whole-Exome Sequencing (WES) Reveals Novel Sex-Specific Gene Variants in Non-Alcoholic Steatohepatitis (MASH). Genes (Basel) 2024; 15:357. [PMID: 38540416 PMCID: PMC10969913 DOI: 10.3390/genes15030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH, also known as MASH) is a severe form of non-alcoholic fatty liver disease (NAFLD, also known as MASLD). Emerging data indicate that the progression of the disease to MASH is higher in postmenopausal women and that genetic susceptibility increases the risk of MASH-related cirrhosis. This study aimed to investigate the association between genetic polymorphisms in MASH and sexual dimorphism. We applied whole-exome sequencing (WES) to identify gene variants in 8 age-adjusted matched pairs of livers from both male and female patients. Sequencing alignment, variant calling, and annotation were performed using standard methods. Polymerase chain reaction (PCR) coupled with Sanger sequencing and immunoblot analysis were used to validate specific gene variants. cBioPortal and Gene Set Enrichment Analysis (GSEA) were used for actionable target analysis. We identified 148,881 gene variants, representing 57,121 and 50,150 variants in the female and male cohorts, respectively, of which 251 were highly significant and MASH sex-specific (p < 0.0286). Polymorphisms in CAPN14, SLC37A3, BAZ1A, SRP54, MYH11, ABCC1, and RNFT1 were highly expressed in male liver samples. In female samples, Polymorphisms in RGSL1, SLC17A2, HFE, NLRC5, ACTN4, SBF1, and ALPK2 were identified. A heterozygous variant 1151G>T located on 18q21.32 for ALPK2 (rs3809983) was validated by Sanger sequencing and expressed only in female samples. Immunoblot analysis confirmed that the protein level of β-catenin in female samples was 2-fold higher than normal, whereas ALPK2 expression was 0.5-fold lower than normal. No changes in the protein levels of either ALPK2 or β-catenin were observed in male samples. Our study suggests that the perturbation of canonical Wnt/β-catenin signaling observed in postmenopausal women with MASH could be the result of polymorphisms in ALPK2.
Collapse
Affiliation(s)
| | | | - Sayed S. Daoud
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences, Spokane, WA 99202, USA; (J.W.); (B.J.W.)
| |
Collapse
|
7
|
Samakkarn W, Vandecruys P, Moreno MRF, Thevelein J, Ratanakhanokchai K, Soontorngun N. New biomarkers underlying acetic acid tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Appl Microbiol Biotechnol 2024; 108:153. [PMID: 38240846 PMCID: PMC10799125 DOI: 10.1007/s00253-023-12946-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 01/22/2024]
Abstract
Evolutionary engineering experiments, in combination with omics technologies, revealed genetic markers underpinning the molecular mechanisms behind acetic acid stress tolerance in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Here, compared to the ancestral Ent strain, evolved yeast strains could quickly adapt to high acetic acid levels (7 g/L) and displayed a shorter lag phase of growth. Bioinformatic-aided whole-genome sequencing identified genetic changes associated with enhanced strain robustness to acetic acid: a duplicated sequence in the essential endocytotic PAN1 gene, mutations in a cell wall mannoprotein (dan4Thr192del), a lipid and fatty acid transcription factor (oaf1Ser57Pro) and a thiamine biosynthetic enzyme (thi13Thr332Ala). Induction of PAN1 and its associated endocytic complex SLA1 and END3 genes was observed following acetic acid treatment in the evolved-resistant strain when compared to the ancestral strain. Genome-wide transcriptomic analysis of the evolved Ent acid-resistant strain (Ent ev16) also revealed a dramatic rewiring of gene expression among genes associated with cellular transport, metabolism, oxidative stress response, biosynthesis/organization of the cell wall, and cell membrane. Some evolved strains also displayed better growth at high acetic acid concentrations and exhibited adaptive metabolic profiles with altered levels of secreted ethanol (4.0-6.4% decrease), glycerol (31.4-78.5% increase), and acetic acid (53.0-60.3% increase) when compared to the ancestral strain. Overall, duplication/mutations and transcriptional alterations are key mechanisms driving improved acetic acid tolerance in probiotic strains. We successfully used adaptive evolutionary engineering to rapidly and effectively elucidate the molecular mechanisms behind important industrial traits to obtain robust probiotic yeast strains for myriad biotechnological applications. KEY POINTS: •Acetic acid adaptation of evolutionary engineered robust probiotic yeast S. boulardii •Enterol ev16 with altered genetic and transcriptomic profiles survives in up to 7 g/L acetic acid •Improved acetic acid tolerance of S. boulardii ev16 with mutated PAN1, DAN4, OAF1, and THI13 genes.
Collapse
Affiliation(s)
- Wiwan Samakkarn
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Heverlee, Belgium
- Center for Microbiology, VIB, Leuven, Flanders, Belgium
| | - Maria Remedios Foulquié Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Heverlee, Belgium
- Center for Microbiology, VIB, Leuven, Flanders, Belgium
| | - Johan Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Heverlee, Belgium
- Center for Microbiology, VIB, Leuven, Flanders, Belgium
- NovelYeast Bv, Open Bio-Incubator, Erasmus High School, (Jette), Brussels, Belgium
| | - Khanok Ratanakhanokchai
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Nitnipa Soontorngun
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|
8
|
Qi Z, Cheng Y, Su Y, Qiao Y, Zhang J, Yang JJ, Xing Q. Clinical variables and genetic variants associated with perioperative anaphylaxis in Chinese Han population: A pilot study. World Allergy Organ J 2024; 17:100854. [PMID: 38223133 PMCID: PMC10784692 DOI: 10.1016/j.waojou.2023.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024] Open
Abstract
Background Perioperative anaphylaxis (POA) can lead to severe consequences. Identifying clinical risk factors and genetic loci associated with POA through pre-prescription screening may help reduce its incidence. Methods Using univariate regression and covariate-adjusted multivariate regression, we retrospectively analyzed the association between clinical characteristics and POA in 72 POA patients and 72 non-POA individuals. The discovery study of whole-exome association relied on whole-exome sequencing of 73 POA cases and 1339 healthy individuals. A replication study involving an independent set of 16 POA cases and 1339 healthy individuals confirmed this association. The accurate typing of human leucocyte antigen through exome sequencing (ATHLATES) algorithm and the whole-exome sequencing data were used for genotyping the human leucocyte antigen G (HLA-G) of 73 POA patients. The HLA-G of 16 POA cases and 122 non-POA patients were genotyped through Sanger sequencing. We used Fisher's exact probability method to compare the allele and carrier frequencies between POA patients and healthy individuals or non-POA patients. A Pc (P/Bonferroni correction coefficient) < 0.05 represents statistical significance. Results Regression analysis identified female sex, an unconfirmed food allergy label, and a history of prior surgery as clinical variables associated with POA. The whole-exome association discovery study identified a strong signal in the major histocompatibility complex region on chromosome 6, with the rs1130356 being the most significant locus (P = 1.5E-10, OR = 3.4, 95% CI = 2.4-4.9). The replication study verified the association between the rs1130356-T allele and POA cases (P = 1.0E-6, OR = 6.3, 95% CI = 3.1-12.7). Compared with non-POA patients, HLA-G∗01:01 (Pc = 2.4E-4, OR = 2.4, 95% CI = 1.6-3.6) was significantly enriched, while HLA-G∗01:04 (Pc = 1.2E-6, OR = 0.3, 95% CI = 0.2-0.5) was lessened in POA patients. Conclusion Our study suggested an association between POA and the risk factors of female sex, an unconfirmed food allergy label, and prior surgery. HLA-G, located in the human leucocyte antigen (HLA) region, may act as a surrogate genetic marker for POA. This suggests a causal relationship between this specific genomic region and POA. Our findings shed light on the contribution of human exome genetic variants to the susceptibility to POA.
Collapse
Affiliation(s)
- Zheng Qi
- Institutes of Biomedical Sciences of Fudan University and Children's Hospital of Fudan University, Shanghai, China
| | - Ye Cheng
- Institutes of Biomedical Sciences of Fudan University and Children's Hospital of Fudan University, Shanghai, China
| | - Yu Su
- Institutes of Biomedical Sciences of Fudan University and Children's Hospital of Fudan University, Shanghai, China
| | - Yimeng Qiao
- Institutes of Biomedical Sciences of Fudan University and Children's Hospital of Fudan University, Shanghai, China
| | - Jin Zhang
- Institutes of Biomedical Sciences of Fudan University and Children's Hospital of Fudan University, Shanghai, China
| | - Jian-jun Yang
- Department of Anaesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qinghe Xing
- Institutes of Biomedical Sciences of Fudan University and Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
9
|
Udupa P, Ghosh DK. Implementation of Exome Sequencing to Identify Rare Genetic Diseases. Methods Mol Biol 2024; 2719:79-98. [PMID: 37803113 DOI: 10.1007/978-1-0716-3461-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Modern high-throughput genomic testing using next-generation sequencing (NGS) has led to a significant increase in the successful diagnosis of rare genetic disorders. Recent advances in NGS tools and techniques have led to accurate and timely diagnosis of a large proportion of genetic diseases by finding sequence variations in clinical samples. One of the NGS techniques, exome sequencing (ES), is considered as a powerful and easily approachable method for genetic disorders in terms of rapid and cost-effective diagnostic yields. In this chapter, we describe an overview of whole exome sequencing (ES) in the context of experimental and analytical methodologies. Approaches to ES include sequencing capture technique, quality control processes at various stages of sequencing analysis, exome data filtering strategy that incorporates both primary and secondary filtering, and prioritization of candidate variants in diagnosing genetic diseases.
Collapse
Affiliation(s)
- Prajna Udupa
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Debasish Kumar Ghosh
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
10
|
Semjid D, Ahn H, Bayarmagnai S, Gantumur M, Kim S, Lee JH. Identification of novel candidate genes associated with non-syndromic tooth agenesis in Mongolian families. Clin Oral Investig 2023; 28:56. [PMID: 38157055 PMCID: PMC10756872 DOI: 10.1007/s00784-023-05415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES This study aimed to identify genetic variants associated with non-syndromic tooth agenesis (TA) in nine families from Mongolia using whole-exome sequencing (WES) and bioinformatics analysis. MATERIAL AND METHODS The study enrolled 41 participants, including three inherited and six non-inherited families. WES analysis was performed on 14 saliva samples from individuals with non-syndromic TA. The potential candidate genes were identified through variant filtering and segregation analysis. The filtered variants were then analyzed in silico mutation impact analysis. RESULTS WES analysis identified 21 variants associated with TA, and 5 of these variants met all filtering criteria. These variants were located in the exome region of MAST4, ITGA6, PITX2, CACNA1S, and CDON genes. The variant in PITX2 was found in eight participants from inherited and non-inherited families, while the MAST4 variant was identified in 6 participants from inherited families. CONCLUSIONS The study identified various genetic variant candidates associated with TA in different family groups, with PITX2 being the most commonly identified. Our findings suggest that MAST4 may also be a novel candidate gene for TA due to its association with the Wnt signaling pathway. Additionally, we found that five candidate genes related to focal adhesion and calcium channel complex were significant and essential in tooth development. CLINICAL RELEVANCE Identifying new pathogenic genes associated with TA can improve our understanding of the molecular mechanisms underlying the disease, leading to better diagnosis, prevention, and treatment. Early detection of TA based on biomarkers can improve dental management and facilitate orthodontic and prosthetic treatment.
Collapse
Affiliation(s)
- Dejidnorov Semjid
- Department of Prosthodontics, College of Dentistry at Yonsei University, 50-1 Yonsei-Ro, Seodaemoon-Gu, Seoul, 120-752, Republic of Korea
| | - Hyunsoo Ahn
- Department of Life Sciences, Pohang University of Science and Technology, 80 Jigok-Ro, Nam-Gu, Pohang, 790-784, Republic of Korea
| | - Sapaar Bayarmagnai
- Department of Prosthodontics, School of Dentistry, Mongolian National University of Medical Sciences, Chingeltei District, Nuuriin 2-21, Ulaanbaatar, Mongolia
| | - Munkhjargal Gantumur
- Department of Prosthodontics, School of Dentistry, Mongolian National University of Medical Sciences, Chingeltei District, Nuuriin 2-21, Ulaanbaatar, Mongolia
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, 80 Jigok-Ro, Nam-Gu, Pohang, 790-784, Republic of Korea.
| | - Jae Hoon Lee
- Department of Prosthodontics, College of Dentistry at Yonsei University, 50-1 Yonsei-Ro, Seodaemoon-Gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
11
|
Wang XY, Xu YM, Lau ATY. Proteogenomics in Cancer: Then and Now. J Proteome Res 2023; 22:3103-3122. [PMID: 37725793 DOI: 10.1021/acs.jproteome.3c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
For years, the paths of sequencing technologies and mass spectrometry have occurred in isolation, with each developing its own unique culture and expertise. These two technologies are crucial for inspecting complementary aspects of the molecular phenotype across the central dogma. Integrative multiomics strives to bridge the analysis gap among different fields to complete more comprehensive mechanisms of life events and diseases. Proteogenomics is one integrated multiomics field. Here in this review, we mainly summarize and discuss three aspects: workflow of proteogenomics, proteogenomics applications in cancer research, and the SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis of proteogenomics in cancer research. In conclusion, proteogenomics has a promising future as it clarifies the functional consequences of many unannotated genomic abnormalities or noncanonical variants and identifies driver genes and novel therapeutic targets across cancers, which would substantially accelerate the development of precision oncology.
Collapse
Affiliation(s)
- Xiu-Yun Wang
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| |
Collapse
|
12
|
Campbell KM, Amouzgar M, Pfeiffer SM, Howes TR, Medina E, Travers M, Steiner G, Weber JS, Wolchok JD, Larkin J, Hodi FS, Boffo S, Salvador L, Tenney D, Tang T, Thompson MA, Spencer CN, Wells DK, Ribas A. Prior anti-CTLA-4 therapy impacts molecular characteristics associated with anti-PD-1 response in advanced melanoma. Cancer Cell 2023; 41:791-806.e4. [PMID: 37037616 PMCID: PMC10187051 DOI: 10.1016/j.ccell.2023.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 04/12/2023]
Abstract
Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response.
Collapse
Affiliation(s)
- Katie M Campbell
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Meelad Amouzgar
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | | | - Timothy R Howes
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Egmidio Medina
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Travers
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Gabriela Steiner
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Jeffrey S Weber
- Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Jedd D Wolchok
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine, New York, NY 10065, USA
| | - James Larkin
- Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Silvia Boffo
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | - Lisa Salvador
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | - Daniel Tenney
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | - Tracy Tang
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | | | | | - Daniel K Wells
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Antoni Ribas
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA.
| |
Collapse
|
13
|
Wei XJ, Sun H, Miao J, Qiu RQ, Jiang ZZ, Ma ZW, Sun W, Yu XF. Clinical-pathological features and muscle imaging findings in 36 Chinese patients with rimmed vacuolar myopathies: case series study and review of literature. Front Neurol 2023; 14:1152738. [PMID: 37188302 PMCID: PMC10175607 DOI: 10.3389/fneur.2023.1152738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Rimmed vacuolar myopathies (RVMs) are a group of genetically heterogeneous diseases that share histopathological characteristics on muscle biopsy, including the aberrant accumulation of autophagic vacuoles. However, the presence of non-coding sequences and structural mutations, some of which remain undetectable, confound the identification of pathogenic mutations responsible for RVMs. Therefore, we assessed the clinical profiles and muscle magnetic resonance imaging (MRI) changes in 36 Chinese patients with RVMs, emphasizing the role of muscle MRI in disease identification and differential diagnosis to propose a comprehensive literature-based imaging pattern to facilitate improved diagnostic workup. Methods All patients presented with rimmed vacuoles with varying degrees of muscular dystrophic changes and underwent a comprehensive evaluation using clinical, morphological, muscle MRI and molecular genetic analysis. We assessed muscle changes in the Chinese RVMs and provided an overview of the RVMs, focusing on the patterns of muscle involvement on MRI. Results A total of 36 patients, including 24 with confirmed distal myopathy and 12 with limb-girdle phenotype, had autophagic vacuoles with RVMs. Hierarchical clustering of patients according to the predominant effect of the distal or proximal lower limbs revealed that most patients with RVMs could be distinguished. GNE myopathy was the most prevalent form of RVMs observed in this study. Moreover, MRI helped identify the causative genes in some diseases (e.g., desminopathy and hereditary myopathy with early respiratory failure) and confirmed the pathogenicity of a novel mutation (e.g., adult-onset proximal rimmed vacuolar titinopathy) detected using next-generation sequencing. Discussion Collectively, our findings expand our knowledge of the genetic spectrum of RVMs in China and suggest that muscle imaging should be an integral part of assisting genetic testing and avoiding misdiagnosis in the diagnostic workup of RVM.
Collapse
|
14
|
Han H, Feng X, Guo Y, Cheng M, Cui Z, Guo S, Zhou W. Identification of potential target genes of breast cancer in response to Chidamide treatment. Front Mol Biosci 2022; 9:999582. [PMID: 36425653 PMCID: PMC9679413 DOI: 10.3389/fmolb.2022.999582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Chidamide, a new chemically structured HDACi-like drug, has been shown to inhibit breast cancer, but its specific mechanism has not been fully elucidated. In this paper, we selected ER-positive breast cancer MCF-7 cells and used RNA-seq technique to analyze the gene expression differences of Chidamide-treated breast cancer cells to identify the drug targets of Chidamide's anti-breast cancer effect and to lay the foundation for the development of new drugs for breast cancer treatment. The results showed that the MCF-7 CHID group expressed 320 up-regulated genes and 222 down-regulated genes compared to the control group; Gene Ontology functional enrichment analysis showed that most genes were enriched to biological processes. Subsequently, 10 hub genes for Chidamide treatment of breast cancer were identified based on high scores using CytoHubba, a plug-in for Cytoscape: TP53, JUN, CAD, ACLY, IL-6, peroxisome proliferator-activated receptor gamma, THBS1, CXCL8, IMPDH2, and YARS. Finally, a combination of the Gene Expression Profiling Interactive Analysis database and Kaplan Meier mapper to compare the expression and survival analysis of these 10 hub genes, TP53, ACLY, PPARG, and JUN were found to be potential candidate genes significantly associated with Chidamide for breast cancer treatment. Among them, TP53 may be a potential target gene for Chidamide to overcome multi-drug resistance in breast cancer. Therefore, we identified four genes central to the treatment of breast cancer with Chidamide by bioinformatics analysis, and clarified that TP53 may be a potential target gene for Chidamide to overcome multi-drug resistance in breast cancer. This study lays a solid experimental and theoretical foundation for the treatment of breast cancer at the molecular level with Chidamide and for the combination of Chidamide.
Collapse
Affiliation(s)
- Han Han
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Xue Feng
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Yarui Guo
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Meijia Cheng
- Department of Biomedical Statistics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Zhengguo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, Fukui, Japan
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, United States
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| |
Collapse
|
15
|
Meng P, Pan C, Cheng S, Li C, Yao Y, Liu L, Cheng B, Yang X, Zhang Z, Chen Y, Zhang J, Zhang H, Wen Y, Jia Y, Guo X, Zhang F. Evaluating the role of rare genetic variation in sleep duration. Sleep Health 2022; 8:536-541. [PMID: 35907708 DOI: 10.1016/j.sleh.2022.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/22/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To explore the roles of rare and high-impact variants in sleep duration. DESIGN Based on the recently released UK Biobank 200k exome dataset, an exome-wide association study was conducted to detect rare variants (minor allele frequency <0.01) contributing to sleep duration. Variant annotations were performed by the software tool ANNOVAR. Gene-based burden tests of sleep duration were conducted by the SKAT R-package. After quality control, 137,047 subjects were included in this study. CAUSALdb database was used to explore the related mental traits of identified genes. RESULTS We detected 730,572 variants with MAF < 1%, including 3873 frameshift variants, 3977 nonframeshift variants, 449,632 nonsynonymous variants, 1293 startloss variants, 10,254 stopgain variants, 413 stoploss variants, 261,130 synonymous variants, and 3102 variants are annotated as unknown. The burden test of exonic variants detected two exome-wide significant associations for sleep duration including TMIE at 3p21.31 (PBonferroni adjusted = 0.015) and ZIC2 at 13q32.3 (PBonferroni adjusted = 0.047). There are only nonsynonymous contained in TMIE; as for ZIC2, we detected 2 annotations of variants: nonsynonymous (PBonferroni adjusted =2.04 × 10-4) and nonframeshift (PBonferroni adjusted =0.85). TMIE and ZIC2 were reported to be associated with several mental traits, such as chronotype, depression, and brain natriuretic peptide in published study. CONCLUSION This study reported 2 novel candidate genes for a sleep duration, supporting the roles of rare genetic variants in the regulation of sleep duration.
Collapse
Affiliation(s)
- Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
16
|
Dotolo S, Esposito Abate R, Roma C, Guido D, Preziosi A, Tropea B, Palluzzi F, Giacò L, Normanno N. Bioinformatics: From NGS Data to Biological Complexity in Variant Detection and Oncological Clinical Practice. Biomedicines 2022; 10:biomedicines10092074. [PMID: 36140175 PMCID: PMC9495893 DOI: 10.3390/biomedicines10092074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
The use of next-generation sequencing (NGS) techniques for variant detection has become increasingly important in clinical research and in clinical practice in oncology. Many cancer patients are currently being treated in clinical practice or in clinical trials with drugs directed against specific genomic alterations. In this scenario, the development of reliable and reproducible bioinformatics tools is essential to derive information on the molecular characteristics of each patient’s tumor from the NGS data. The development of bioinformatics pipelines based on the use of machine learning and statistical methods is even more relevant for the determination of complex biomarkers. In this review, we describe some important technologies, computational algorithms and models that can be applied to NGS data from Whole Genome to Targeted Sequencing, to address the problem of finding complex cancer-associated biomarkers. In addition, we explore the future perspectives and challenges faced by bioinformatics for precision medicine both at a molecular and clinical level, with a focus on an emerging complex biomarker such as homologous recombination deficiency (HRD).
Collapse
Affiliation(s)
- Serena Dotolo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Cristin Roma
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Davide Guido
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Alessia Preziosi
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Beatrice Tropea
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Fernando Palluzzi
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Luciano Giacò
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
17
|
Huang Y, Ma M, Mao X, Pehlivan D, Kanca O, Un-Candan F, Shu L, Akay G, Mitani T, Lu S, Candan S, Wang H, Xiao B, Lupski JR, Bellen HJ. Novel dominant and recessive variants in human ROBO1 cause distinct neurodevelopmental defects through different mechanisms. Hum Mol Genet 2022; 31:2751-2765. [PMID: 35348658 PMCID: PMC9402236 DOI: 10.1093/hmg/ddac070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 07/27/2023] Open
Abstract
The Roundabout (Robo) receptors, located on growth cones of neurons, induce axon repulsion in response to the extracellular ligand Slit. The Robo family of proteins controls midline crossing of commissural neurons during development in flies. Mono- and bi-allelic variants in human ROBO1 (HGNC: 10249) have been associated with incomplete penetrance and variable expressivity for a breath of phenotypes, including neurodevelopmental defects such as strabismus, pituitary defects, intellectual impairment, as well as defects in heart and kidney. Here, we report two novel ROBO1 variants associated with very distinct phenotypes. A homozygous missense p.S1522L variant in three affected siblings with nystagmus; and a monoallelic de novo p.D422G variant in a proband who presented with early-onset epileptic encephalopathy. We modeled these variants in Drosophila and first generated a null allele by inserting a CRIMIC T2A-GAL4 in an intron. Flies that lack robo1 exhibit reduced viability but have very severe midline crossing defects in the central nervous system. The fly wild-type cDNA driven by T2A-Gal4 partially rescues both defects. Overexpression of the human reference ROBO1 with T2A-GAL4 is toxic and reduces viability, whereas the recessive p.S1522L variant is less toxic, suggesting that it is a partial loss-of-function allele. In contrast, the dominant variant in fly robo1 (p.D413G) affects protein localization, impairs axonal guidance activity and induces mild phototransduction defects, suggesting that it is a neomorphic allele. In summary, our studies expand the phenotypic spectrum associated with ROBO1 variant alleles.
Collapse
Affiliation(s)
- Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feride Un-Candan
- Department of Neuroloy, Balikesir Ataturk Public Hospital, Balikesir 10100, Turkey
| | - Li Shu
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sukru Candan
- Department of Medical Genetics, Balikesir Ataturk Public Hospital, Balikesir 10100, Turkey
| | - Hua Wang
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Bo Xiao
- Neurology Department, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
18
|
Shu L, Xiao N, Qin J, Tian Q, Zhang Y, Li H, Liu J, Li Q, Gu W, Wang P, Wang H, Mao X. The Role of Microtubule Associated Serine/Threonine Kinase 3 Variants in Neurodevelopmental Diseases: Genotype-Phenotype Association. Front Mol Neurosci 2022; 14:775479. [PMID: 35095415 PMCID: PMC8790505 DOI: 10.3389/fnmol.2021.775479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To prove microtubule associated serine/threonine kinase 3 (MAST3) gene is associated with neurodevelopmental diseases (NDD) and the genotype-phenotype correlation.Methods: Trio exome sequencing (trio ES) was performed on four NDD trios. Bioinformatic analysis was conducted based on large-scale genome sequencing data and human brain transcriptomic data. Further in vivo zebrafish studies were performed.Results: In our study, we identified four de novo MAST3 variants (NM_015016.1: c.302C > T:p.Ser101Phe; c.311C > T:p.Ser104Leu; c.1543G > A:p.Gly515Ser; and c.1547T > C:p.Leu516Pro) in four patients with developmental and epileptic encephalopathy (DEE) separately. Clinical heterogeneities were observed in patients carrying variants in domain of unknown function (DUF) and serine-threonine kinase (STK) domain separately. Using the published large-scale exome sequencing data, higher CADD scores of missense variants in DUF domain were found in NDD cohort compared with gnomAD database. In addition, we obtained an excess of missense variants in DUF domain when compared autistic spectrum disorder (ASD) cohort with gnomAD database, similarly an excess of missense variants in STK domain when compared DEE cohort with gnomAD database. Based on Brainspan datasets, we showed that MAST3 expression was significantly upregulated in ASD and DEE-related brain regions and was functionally linked with DEE genes. In zebrafish model, abnormal morphology of central nervous system was observed in mast3a/b crispants.Conclusion: Our results support the possibility that MAST3 is a novel gene associated with NDD which could expand the genetic spectrum for NDD. The genotype-phenotype correlation may contribute to future genetic counseling.
Collapse
Affiliation(s)
- Li Shu
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Department of School of Life Sciences, Central South University, Changsha, China
| | - Neng Xiao
- Department of Pediatric Neurology, Chenzhou First People’s Hospital, Chenzhou, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Qi Tian
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Yanghui Zhang
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Haoxian Li
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | | | - Qinrui Li
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, China
| | - Pengchao Wang
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Hua Wang,
| | - Xiao Mao
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- *Correspondence: Xiao Mao,
| |
Collapse
|
19
|
Tian Q, Shu L, Zhang P, Zeng T, Cao Y, Xi H, Peng Y, Wang Y, Mao X, Wang H. MN1 Neurodevelopmental Disease-Atypical Phenotype Due to a Novel Frameshift Variant in the MN1 Gene. Front Mol Neurosci 2022; 14:789778. [PMID: 34975401 PMCID: PMC8716923 DOI: 10.3389/fnmol.2021.789778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background:MN1 C-terminal truncation (MCTT) syndrome is caused by variants in the C-terminal region of MN1, which were first described in 2020. The clinical features of MCTT syndrome includes severe neurodevelopmental and brain abnormalities. We reported on a patient who carried the MN1 variant in the C-terminal region with mild developmental delay and normal brain magnetic resonance image (MRI). Methods: Detailed clinical information was collected in the pedigree. Whole-exome sequencing (WES) accompanied with Sanger sequencing validation were performed. A functional study based on HEK239T cells was performed. Results: A de novo heterozygous c.3734delT: p.L1245fs variant was detected. HEK239T cells transinfected with the de novo variant showed decreased proliferation, enhanced apoptotic rate, and MN1 nuclear aggregation. Conclusion: Our study expended the clinical and genetic spectrum of MCTT which contributes to the genetic counseling of the MN1 gene.
Collapse
Affiliation(s)
- Qi Tian
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Li Shu
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Pu Zhang
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Ting Zeng
- The Ministry of Education and Science, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Yang Cao
- Department of Radiology, Chenzhou First People's Hospital, Chenzhou, China
| | - Hui Xi
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Ying Peng
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Yaqin Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Hua Wang
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| |
Collapse
|
20
|
Liu J, Xu WY, Ye M, Liu Z, Li C. Genetic Alteration Profiling of Chinese Lung Adenocarcinoma and Its Effect on Targeted Therapy Efficacy. Front Oncol 2022; 11:726547. [PMID: 34970478 PMCID: PMC8712938 DOI: 10.3389/fonc.2021.726547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and a highly heterogeneous disease with a diversity of phenotypes and genotypes in different populations. The purpose of this study is to investigate oncogenic alterations of lung adenocarcinoma (LUAD) in eastern China and their significance in targeted therapies. Methods This study enrolled 101 LUAD patients and used a customized DNA panel to detect molecular alterations. Comprehensive analysis of mutations and clinical application of genomic profiling was carried out. Results The most commonly mutated genes were epidermal growth factor receptor (EGFR) (53%) and tumor protein p53 (TP53) (32%). The less frequently mutated genes were erb-b2 receptor tyrosine kinase 2 (ERBB2) (25%), ATR serine/threonine kinase (ATR) (20%), CCAAT enhancer binding protein alpha (CEBPA) (16%), RB transcriptional corepressor 1 (RB1) (16%), transcription factor 7 like 2 (TCF7L2) (14%), ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) (12%) and spectrin alpha, erythrocytic 1 (SPTA1) (12%). Among them, the frequency of ERBB2, ATR, CEBPA, RB1 and TCF7L2 mutations was much higher than that in the databases. Seventy percent of the patients harbored at least one actionable alteration according to the OncoKB evidence. CEBPA mutations affected the efficacy of EGFR-tyrosine kinase inhibitors. ERBB2, CEBPA and TCF7L2 mutated tumors tend to have higher tumor mutation burden (TMB). Conclusions LUAD patients from eastern China have a unique profile of mutations. The targeted DNA panel is helpful for personalized treatment decision of LUAD patients, and specific mutations may affect the efficacy of targeted therapies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wang-Yang Xu
- Department of Medicine, Singlera Genomics (Shanghai) Ltd., Shanghai, China
| | - Maosong Ye
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zilong Liu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Zhu W, Zhang J, Yuan X, Liu X, Zhang Z, Mao Y, Feng Y, Yue A, Sun J, Wen C, Xu J, Shen Y, Che Y, Du J. Whole-exome sequencing reveals novel candidate single nucleotide variations for preventing adverse effects of levonorgestrel implantation. Pharmacogenomics 2021; 22:1185-1199. [PMID: 34783250 DOI: 10.2217/pgs-2021-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To identify novel genes associated with adverse effects of levonorgestrel (LNG) implants based on comparative whole-exome sequencing. Materials & methods: A cohort comprising 104 participants, including 52 controls and 52 women with LNG-related adverse effects, was recruited. Seven cases and eight controls were selected for whole-exome sequencing. We verified 13 single nucleotide variations (SNVs) related with integrin-mediated signaling pathway and cell proliferation using the MassARRAY platform. Results: Finally, we screened 49 cases and 52 controls for analyses. Two SNVs (rs7255721 and rs1042522) were located in ADAMTS10 and TP53, respectively, and significantly different between two groups. These two SNVs lead to changes in protein structure and physicochemical parameters. Conclusion: Here, we defined two pathogenic mutations related to adverse LNG effects.
Collapse
Affiliation(s)
- Weiqiang Zhu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical & Pharmaceutical Technologies), Medical School, Fudan University, Shanghai 200032, China
| | - Junxian Zhang
- Department of Family Planning, Maternal & Child Health Care Hospital of Xinjiang Uygur Autonomous Region, Xinjiang 830001, China
| | - Xuelian Yuan
- Hami Central Hospital, Xinjiang Medical University, Xinjiang 830099, China
| | - Xiaoli Liu
- Chongqing Health Center for Women & Children, Chongqing 400010, China
| | - Zhaofeng Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical & Pharmaceutical Technologies), Medical School, Fudan University, Shanghai 200032, China
| | - Yanyan Mao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical & Pharmaceutical Technologies), Medical School, Fudan University, Shanghai 200032, China
| | - Ying Feng
- Department of Family Planning, Maternal & Child Health Care Hospital of Xinjiang Uygur Autonomous Region, Xinjiang 830001, China
| | - Ailing Yue
- Hami Central Hospital, Xinjiang Medical University, Xinjiang 830099, China
| | - Junjie Sun
- Chongqing Health Center for Women & Children, Chongqing 400010, China
| | - Chuan Wen
- Hami Central Hospital, Xinjiang Medical University, Xinjiang 830099, China
| | - Jianhua Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical & Pharmaceutical Technologies), Medical School, Fudan University, Shanghai 200032, China
| | - Yupei Shen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical & Pharmaceutical Technologies), Medical School, Fudan University, Shanghai 200032, China
| | - Yan Che
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical & Pharmaceutical Technologies), Medical School, Fudan University, Shanghai 200032, China
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical & Pharmaceutical Technologies), Medical School, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Konina D, Sparber P, Viakhireva I, Filatova A, Skoblov M. Investigation of LINC00493/SMIM26 Gene Suggests Its Dual Functioning at mRNA and Protein Level. Int J Mol Sci 2021; 22:ijms22168477. [PMID: 34445188 PMCID: PMC8395196 DOI: 10.3390/ijms22168477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The amount of human long noncoding RNA (lncRNA) genes is comparable to protein-coding; however, only a small number of lncRNAs are functionally annotated. Previously, it was shown that lncRNAs can participate in many key cellular processes, including regulation of gene expression at transcriptional and post-transcriptional levels. The lncRNA genes can contain small open reading frames (sORFs), and recent studies demonstrated that some of the resulting short proteins could play an important biological role. In the present study, we investigate the widely expressed lncRNA LINC00493. We determine the structure of the LINC00493 transcript, its cell localization and influence on cell physiology. Our data demonstrate that LINC00493 has an influence on cell viability in a cell-type-specific manner. Furthermore, it was recently shown that LINC00493 has a sORF that is translated into small protein SMIM26. The results of our knockdown and overexpression experiments suggest that both LINC00493/SMIM26 transcript and protein affect cell viability, but in the opposite manner.
Collapse
Affiliation(s)
- Daria Konina
- Moscow Institute of Physics and Technology, Phystech School of Biological and Medical Physics, 141701 Dolgoprudny, Russia
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
- Correspondence: (D.K.); (A.F.)
| | - Peter Sparber
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
| | - Iuliia Viakhireva
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
| | - Alexandra Filatova
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
- Correspondence: (D.K.); (A.F.)
| | - Mikhail Skoblov
- Research Centre of Medical Genetics, Laboratory of Functional Genomics, 115478 Moscow, Russia; (P.S.); (I.V.); (M.S.)
| |
Collapse
|
23
|
Zhu Q, Zhou Y, Ding J, Chen L, Liu J, Zhou T, Bian W, Ding G, Li G. Screening of Candidate Pathogenic Genes for Spontaneous Abortion using Whole Exome Sequencing. Comb Chem High Throughput Screen 2021; 25:1462-1473. [PMID: 34225611 DOI: 10.2174/1386207324666210628115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Spontaneous abortion is a common disease in obstetrics and reproduction. OBJECTIVE This study aimed to screen candidate pathogenic genes for spontaneous abortion using whole-exome sequencing. METHODS Genomic DNA was extracted from abortion tissues of spontaneous abortion patients and sequenced using the Illumina HiSeq2500 high-throughput sequencing platform. Whole exome sequencing was performed to select harmful mutations, including SNP and insertion and deletion sites, associated with spontaneous abortion. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and gene fusion analyses were performed. MUC3A and PDE4DIP were two novel mutation genes that were screened and verified by PCR in abortion tissues of patients. RESULTS A total of 83,633 SNPs and 13,635 Indel mutations were detected, of which 29172 SNPs and 3093 Indels were screened as harmful mutations. The 7 GO-BP, 4 GO-CC, 9 GO-MF progress, and 3 KEGG pathways were enriched in GO and KEGG pathway analyses. A total of 746 gene fusion mutations were obtained, involving 492 genes. MUC3A and PDE4DIP were used for PCR verification because of their high number of mutation sites in all samples. CONCLUSION There are extensive SNPs and Indel mutations in the genome of spontaneous abortion tissues, and the effect of these gene mutations on spontaneous abortion needs further experimental verification.
Collapse
Affiliation(s)
- Qingwen Zhu
- Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Yiwen Zhou
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Jiayi Ding
- Reproductive Medicine Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Li Chen
- Reproductive Medicine Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Jia Liu
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Tao Zhou
- Reproductive Medicine Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Wenjun Bian
- Prenatal Screening and Diagnosis Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Guohui Ding
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Guang Li
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| |
Collapse
|
24
|
Cheng C, Wu X, Shen Y, Li Q. KIF14 and KIF23 Promote Cell Proliferation and Chemoresistance in HCC Cells, and Predict Worse Prognosis of Patients with HCC. Cancer Manag Res 2020; 12:13241-13257. [PMID: 33380832 PMCID: PMC7767722 DOI: 10.2147/cmar.s285367] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common human malignant tumors. The prognosis of HCC patients is still unsatisfying. In this study, we performed the integrated bioinformatics analysis to identify potential biomarkers and biological pathways in HCC. Methods Gene expression profiles were obtained from the Gene Expression Omnibus database (GSE55048, GSE55758, and GSE56545) for the screening of the common differentially expressed genes (DEGs) between HCC tissues and matched non-tumor tissues. DEGs were subjected to Gene Ontology, KEGG pathway, and Reactome pathway analysis. The hub genes were identified by using protein–protein interaction (PPI) network analysis. The hub genes in HCC were further subjected to overall survival analysis of HCC patients. The hub genes were further validated by in vitro functional assays. Results A total of 544 common differentially expressed genes were screened from three datasets. Gene Ontology, KEGG and Reactome analysis results showed that DEGs are significantly associated with the biological process of cell cycle, cell division, and DNA replication. PPI network analysis identified 20 hub genes from the DEGs. These hub genes except CENPE were all significantly up-regulated in the HCC tissues when compared to non-tumor tissues. The Kaplan–Meier survival analysis results showed that the high expression of the 20 hub genes was associated with shorter survival of the HCC patients. Further validation studies showed that knockdown of KIF14 and KIF23 both suppressed the proliferative potential, increased the caspase-3/-7 activity, up-regulated Bax expression, and promoted the invasive and migratory abilities in the HCC cells. In addition, knockdown of KIF14 and KIF23 enhanced chemosensitivity to cisplatin and sorafenib in the HCC cells. Finally, the high expression of KIF14 and KIF23 was associated with shorter progression-free survival, recurrence-free survival, and disease-specific survival of patients with HCC. Conclusion In conclusion, the present study performed the integrated bioinformatics analysis and showed that KIF14 and KIF23 silence attenuated cell proliferation, invasion, and migration, and promoted chemosensitivity of HCC cells. KIF14 and KIF23 may serve as potential biomarkers for predicting the worse prognosis of patients with HCC.
Collapse
Affiliation(s)
- Chunxia Cheng
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Liangyungang City 222023, People's Republic of China
| | - Xingxing Wu
- Deparment of Pediatric Surgery, The Second People's Hospital of Lianyungang, Liangyungang City 222023, People's Republic of China
| | - Yu Shen
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Liangyungang City 222023, People's Republic of China
| | - Quanxi Li
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Liangyungang City 222023, People's Republic of China
| |
Collapse
|
25
|
Banne E, Falik-Zaccai T, Brielle E, Kalfon L, Ladany H, Klinger D, Schneidman-Duhovny D, Linial M. De novo STXBP1 mutation in a child with developmental delay and spasticity reveals a major structural alteration in the interface with syntaxin 1A. Am J Med Genet B Neuropsychiatr Genet 2020; 183:412-422. [PMID: 32815282 DOI: 10.1002/ajmg.b.32816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 06/09/2020] [Accepted: 07/08/2020] [Indexed: 01/19/2023]
Abstract
STXBP1, also known as Munc-18, is a master regulator of neurotransmitter release and synaptic function in the human brain through its direct interaction with syntaxin 1A. STXBP1 binds syntaxin 1A is an inactive conformational state. STXBP1 decreases its binding affinity to syntaxin upon phosphorylation, enabling syntaxin 1A to engage in the SNARE complex, leading to neurotransmitter release. STXBP1-related disorders are well characterized by encephalopathy with epilepsy, and a diverse range of neurological and neurodevelopmental conditions. Through exome sequencing of a child with developmental delay, hypotonia, and spasticity, we found a novel de novo insertion mutation of three nucleotides in the STXBP1 coding region, resulting in an additional arginine after position 39 (R39dup). Inconclusive results from state-of-the-art variant prediction tools mandated a structure-based approach using molecular dynamics (MD) simulations of the STXBP1-syntaxin 1A complex. Comparison of the interaction interfaces of the wild-type and the R39dup complexes revealed a reduced interaction surface area in the mutant, leading to destabilization of the protein complex. Moreover, the decrease in affinity toward syntaxin 1A is similar for the phosphorylated STXBP1 and the R39dup. We applied the same MD methodology to seven additional previously reported STXBP1 mutations and reveal that the stability of the STXBP1-syntaxin 1A interface correlates with the reported clinical phenotypes. This study provides a direct link between the outcome of a novel variant in STXBP1 and protein structure and dynamics. The structural change upon mutation drives an alteration in synaptic function.
Collapse
Affiliation(s)
- Ehud Banne
- The Genetics Institute, Kaplan Medical Center - Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Tzipora Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel.,Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Esther Brielle
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel
| | - Hagay Ladany
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel
| | - Danielle Klinger
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
Borges MG, Rocha CS, Carvalho BS, Lopes-Cendes I. Methodological differences can affect sequencing depth with a possible impact on the accuracy of genetic diagnosis. Genet Mol Biol 2020; 43:e20190270. [PMID: 32343762 PMCID: PMC7198014 DOI: 10.1590/1678-4685-gmb-2019-0270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/16/2020] [Indexed: 11/24/2022] Open
Abstract
For a better interpretation of variants, evidence-based databases, such as
ClinVar, compile data on the presumed relationships between variants and
phenotypes. In this study, we aimed to analyze the pattern of sequencing depth
in variants from whole-exome sequencing data in the 1000 Genomes project phase
3, focusing on the variants present in the ClinVar database that were predicted
to affect protein-coding regions. We demonstrate that the distribution of the
sequencing depth varies across different sequencing centers (pair-wise
comparison, p < 0.001). Most importantly, we found that the
distribution pattern of sequencing depth is specific to each facility, making it
possible to correctly assign 96.9% of the samples to their sequencing center.
Thus, indicating the presence of a systematic bias, related to the methods used
in the different facilities, which generates significant variations in breadth
and depth in whole-exome sequencing data in clinically relevant regions. Our
results show that methodological differences, leading to significant
heterogeneity in sequencing depth, may potentially influence the accuracy of
genetic diagnosis. Furthermore, our findings highlight how it is still
challenging to integrate results from different sequencing centers, which may
also have an impact on genomic research.
Collapse
Affiliation(s)
- Murilo G Borges
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Departamento de Genética Médica e Medicina Genômica, Campinas, SP, Brazil.,Instituto Brasileiro de Neurociência e Neurotecnologia (BRAINN), Campinas, SP, Brazil.,Universidade Estadual de Campinas (UNICAMP), Instituto de Física "Gleb Wataghin". Campinas, SP, Brazil
| | - Cristiane S Rocha
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Departamento de Genética Médica e Medicina Genômica, Campinas, SP, Brazil.,Instituto Brasileiro de Neurociência e Neurotecnologia (BRAINN), Campinas, SP, Brazil
| | - Benilton S Carvalho
- Instituto Brasileiro de Neurociência e Neurotecnologia (BRAINN), Campinas, SP, Brazil.,Universidade Estadual de Campinas (UNICAMP), Instituto de Matemática, Estatística e Computação Científica, Departamento de Estatística, Campinas, SP, Brazil
| | - Iscia Lopes-Cendes
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Departamento de Genética Médica e Medicina Genômica, Campinas, SP, Brazil.,Instituto Brasileiro de Neurociência e Neurotecnologia (BRAINN), Campinas, SP, Brazil
| |
Collapse
|
27
|
Neng X, Xiao M, Yuanlu C, Qinyan L, Li S, Zhanyi S. Novel variant in CHRNA4 with benign childhood epilepsy with centrotemporal spikes and contribution to precise medicine. Mol Genet Genomic Med 2020; 8:e1264. [PMID: 32342646 PMCID: PMC7336761 DOI: 10.1002/mgg3.1264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023] Open
Abstract
Background Benign childhood epilepsy with centrotemporal spikes (BECTS) or benign rolandic epilepsy is the most common epileptic syndrome in school‐age children. Genetics is an important factor in BECTS pathogenesis, and <10 genes were associated with BECTS. This study aimed to identify novel genetic causes of BECTS. Methods We conducted whole‐exome sequencing on a patient with BECTS and validated the findings by Sanger sequencing in a pedigree with three patients. Results CHRNA4 c.1007G>A was identified in three patients with BECTS in a pedigree. Carbamazepine, which should be carefully used in BECTS, was observed to be effective in the treatment of our atypical BECTS proband based on the molecular diagnosis of CHRNA4. Conclusion This is the first study on CHRNA4 variant in BECTS, which widened the genetic spectrum of BECTS and contributed to precise medicine in BECTS.
Collapse
Affiliation(s)
- Xiao Neng
- Department of Pediatric Neurology, Chenzhou First People's Hospital, Chenzhou, China
| | - Mao Xiao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan province, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,NHC key laboratory of birth defects research, prevention and treatment Changsha, Hunan, China
| | - Chen Yuanlu
- Department of Pharmacy, Chenzhou First People's Hospital, Chenzhou, China
| | - Li Qinyan
- Department of Neuroelectrophysiology, Chenzhou First People's Hospital, Chenzhou, China
| | - Shu Li
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan province, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,NHC key laboratory of birth defects research, prevention and treatment Changsha, Hunan, China
| | - Song Zhanyi
- Department of Pediatrics, Maternal and Child Health Hospital of Chenzhou city, Chenzhou, China
| |
Collapse
|