1
|
Nell RJ, Versluis M, Menger NV, Gelmi MC, Vu THK, Verdijk RM, Luyten GPM, Jager MJ, van der Velden PA. Digital PCR-based genetic profiling from vitreous fluid as liquid biopsy for primary uveal melanoma: a proof-of-concept study. J Exp Clin Cancer Res 2025; 44:124. [PMID: 40240901 PMCID: PMC12004579 DOI: 10.1186/s13046-025-03374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Uveal melanoma is an aggressive ocular malignancy. Early molecular characterisation of primary tumours is crucial to identify those at risk of metastatic dissemination. Although tumour biopsies are being taken, liquid biopsies of ocular fluids may form a less invasive but relatively unexplored alternative. In this study, we aim to evaluate the DNA content of vitreous fluid from eyes with a uveal melanoma to obtain molecular tumour information. METHODS DNA was isolated from 65 vitreous fluid samples from enucleated eyes with a uveal melanoma and studied using digital PCR. Primary and additional driver mutations (in GNAQ, GNA11, PLCB4, CYSLTR2, BAP1, SF3B1 and EIF1AX) were investigated using accustomed targeted and drop-off assays. The copy numbers of chromosome 3p and 8q were measured using multiplex and single-nucleotide polymorphism-based assays. Our findings were compared to the molecular profile of matched primary tumours and to the clinicopathological tumour characteristics. RESULTS Almost all (63/65) vitreous fluids had measurable levels of DNA, but melanoma-cell derived DNA (containing the primary driver mutation) was detected in 45/65 samples (median proportion 15.5%, range 0.03-94.4%) and was associated with a larger tumour prominence, but not with any of the molecular tumour subtypes. Among the vitreous fluids with melanoma-cell derived DNA, not all samples harboured (analysable) other mutations or had sufficient statistical power to measure copy numbers. Still, additional mutations in BAP1, SF3B1 and EIF1AX were detected in 15/17 samples and chromosome 3p and 8q copy numbers matched the primary tumour in 19/21 and 18/20 samples, respectively. Collectively, a clinically-relevant molecular classification of the primary tumour could be inferred from 29/65 vitreous fluids. CONCLUSIONS This proof-of-concept study shows that substantial amounts of DNA could be detected in vitreous fluids from uveal melanoma patients, including melanoma-cell derived DNA in 69% of the samples. Prognostically-relevant genetic alterations of the primary tumour could be identified in 45% of the patients. A follow-up study is needed to evaluate our approach in a prospective clinical context. Additionally, our work highlights improved possibilities to sensitively analyse scarce and heterogeneous tumour biopsies, with potential application in other malignancies.
Collapse
Affiliation(s)
- R J Nell
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands.
| | - M Versluis
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - N V Menger
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - M C Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - T H K Vu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - R M Verdijk
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - G P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - M J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - P A van der Velden
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Nell RJ, Versluis M, Cats D, Mei H, Verdijk RM, Kroes WGM, Luyten GPM, Jager MJ, van der Velden PA. Identification of diagnostic and prognostic genetic alterations in uveal melanoma using RNA sequencing. Sci Rep 2025; 15:8167. [PMID: 40059100 PMCID: PMC11891316 DOI: 10.1038/s41598-025-90122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/11/2025] [Indexed: 05/13/2025] Open
Abstract
Uveal melanoma is a lethal intraocular tumour, in which the presence of various genetic alterations correlates with the risk of metastatic dissemination and survival. Here, we tested the detectability of all key mutations and chromosomal changes from RNA sequencing data in 80 primary uveal melanomas studied by The Cancer Genome Atlas (TCGA) initiative, and in five prospective cases. Whereas unsupervised gene expression profiling strongly indicated the presence of chromosome 3 alterations, it was not reliable in identifying other alterations. Though, the presence of both chromosome 3 and 8q copy number alterations could be successfully inferred from expressed allelic imbalances of heterozygous common single nucleotide polymorphisms. Most mutations were adequately recognised in the RNA by their nucleotide changes (all genes), alternative splicing around the mutation (BAP1) and transcriptome-wide aberrant splicing (SF3B1). Notably, in the TCGA cohort we detected previously unreported mutations in BAP1 (n = 3) and EIF1AX (n = 5), that were missed by the original DNA sequencing. In our prospective cohort, all genetic alterations were successfully identified by combining the described approaches. In conclusion, a transcriptional analysis presents insights into the expressed tumour genotype and its phenotypic consequences and may augment or even substitute DNA-based approaches, with potential applicability in research and clinical practice.
Collapse
Affiliation(s)
- Rogier J Nell
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Mieke Versluis
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Davy Cats
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilma G M Kroes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Pieter A van der Velden
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
3
|
Nell RJ, Zoutman WH, Versluis M, van der Velden PA. Generic Multiplex Digital PCR for Accurate Quantification of T Cells in Copy Number Stable and Unstable DNA Samples. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2453:191-208. [PMID: 35622328 DOI: 10.1007/978-1-0716-2115-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An accurate T cell quantification is prognostically and therapeutically relevant in various clinical applications, including oncology care and research. In this chapter, we describe how T cell quantifications can be obtained from bulk DNA samples with a multiplex digital PCR experiment. The experimental setup includes the concurrent quantification of three different DNA targets within one reaction: a unique T cell DNA marker, a regional corrector, and a reference DNA marker. The T cell marker is biallelically absent in T cells due to VDJ rearrangements, while the reference is diploid in all cells. The so-called regional corrector allows to correct for possible copy number alterations at the T cell marker locus in cancer cells. By mathematically integrating the measurements of all three markers, T cells can be accurately quantified in both copy number stable and unstable DNA samples.
Collapse
Affiliation(s)
- Rogier J Nell
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem H Zoutman
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mieke Versluis
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
4
|
Zoutman WH, Nell RJ, Versluis M, Pico I, Khanh Vu TH, Verdijk RM, van der Burg M, Langerak AW, van der Velden PA. A novel digital PCR-based method to quantify (switched) B cells reveals the extent of allelic involvement in different recombination processes in the IGH locus. Mol Immunol 2022; 145:109-123. [PMID: 35339027 DOI: 10.1016/j.molimm.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/14/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
B cells fulfill an important role in the adaptive immunity. Upon activation and immunoglobulin (IG) class switching, these cells function in the humoral immunity compartment as plasma cells. For clinical applications, it can be important to quantify (switched) B cells accurately in a variety of body fluids and tissues of benign, inflammatory and malignant origin. For decades, flow cytometry and immunohistochemistry (IHC) have been the preferred methods for quantification. Although these methods are widely used, both depend on the accessibility of B cell epitopes and therefore require intact (fixed) cells. Whenever samples are low in quantity and/or quality, accurate quantification can be difficult. By shifting the focus from epitopes to DNA markers, quantification of B cells remains achievable. During differentiation and maturation, B cells are subjected to programmed genetic recombination processes like VDJ rearrangements and class switch recombination (CSR), which result in deletion of specific sequences of the IGH locus. These cell type-specific DNA "scars" (loss of sequences) in IG genes can be exploited as B cell markers in digital PCR (dPCR) based quantification methods. Here, we describe a novel, specific and sensitive digital PCR-based method to quantify mature and switched B cells in DNA specimens of benign and (copy number unstable) malignant origin. We compared this novel way of B cell quantitation with flow cytometric and immunohistochemical methods. Through cross-validation with flow cytometric sorted B cell subpopulations, we gained quantitative insights into allelic involvement in different recombination processes in the IGH locus. Our newly developed method is accurate and independent of the cellular context, offering new possibilities for quantification, even for (limited) small samples like liquid biopsies.
Collapse
Affiliation(s)
- Willem H Zoutman
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rogier J Nell
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mieke Versluis
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid Pico
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - T H Khanh Vu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton W Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|
5
|
Nell RJ, Zoutman WH, Calbet-Llopart N, Garcia AP, Menger NV, Versluis M, Puig S, Gruis NA, van der Velden PA. Accurate Quantification of T Cells in Copy Number Stable and Unstable DNA Samples Using Multiplex Digital PCR. J Mol Diagn 2021; 24:88-100. [PMID: 34775028 DOI: 10.1016/j.jmoldx.2021.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
An accurate T-cell quantification is prognostically and therapeutically relevant in various malignancies. We previously developed a digital PCR-based approach offering a precise T-cell enumeration in small amounts of DNA. However, it may be challenging to apply this method in malignant specimens, as copy number instability can disturb the underlying mathematical model. For example, approximately 24% of the tumors from The Cancer Genome Atlas pan-cancer data set carried a copy number alteration affecting our TRB gene T-cell marker, which would cause an underestimation or overestimation of the T-cell fraction. In this study, we introduce a multiplex digital PCR experimental setup to quantify T cells in copy number unstable DNA samples. By implementing a so-called regional corrector, genetic alterations involving the T-cell marker locus can be recognized and corrected for. This novel setup is evaluated mathematically in silico and validated in vitro by measuring T-cell presence in various samples with a known T-cell fraction. The utility of the approach is further demonstrated in copy number altered cutaneous melanomas. Our novel multiplex setup provides a simple, but accurate, DNA-based T-cell quantification in both copy number stable and unstable specimens. This approach has potential clinical and diagnostic applications, as it does not depend on availability of T-cell epitopes, has low requirements for sample quantity and quality, and can be performed in a relatively easy experiment.
Collapse
Affiliation(s)
- Rogier J Nell
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Willem H Zoutman
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Neus Calbet-Llopart
- Department of Dermatology, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Centro Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Adriana P Garcia
- Department of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Nino V Menger
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mieke Versluis
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Puig
- Department of Dermatology, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Centro Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
6
|
Nell RJ, Menger NV, Versluis M, Luyten GPM, Verdijk RM, Madigan MC, Jager MJ, van der Velden PA. Involvement of mutant and wild-type CYSLTR2 in the development and progression of uveal nevi and melanoma. BMC Cancer 2021; 21:164. [PMID: 33588787 PMCID: PMC7885466 DOI: 10.1186/s12885-021-07865-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Background Activating Gαq signalling mutations are considered an early event in the development of uveal melanoma. Whereas most tumours harbour a mutation in GNAQ or GNA11, CYSLTR2 (encoding G-protein coupled receptor CysLT2R) forms a rare alternative. The role of wild-type CysLT2R in uveal melanoma remains unknown. Methods We performed a digital PCR-based molecular analysis of benign choroidal nevi and primary uveal melanomas. Publicly available bulk and single cell sequencing data were mined to further study mutant and wild-type CYSLTR2 in primary and metastatic uveal melanoma. Results 1/16 nevi and 2/120 melanomas carried the CYSLTR2 mutation. The mutation was found in a subpopulation of the nevus, while being clonal in both melanomas. In the melanomas, secondary, subclonal CYSLTR2 alterations shifted the allelic balance towards the mutant. The resulting genetic heterogeneity was confirmed in distinct areas of both tumours. At the RNA level, further silencing of wild-type and preferential expression of mutant CYSLTR2 was identified, which was also observed in two CYSLTR2 mutant primary melanomas and one metastatic lesion from other cohorts. In CYSLTR2 wild-type melanomas, high expression of CYSLTR2 correlated to tumour inflammation, but expression originated from melanoma cells specifically. Conclusions Our findings suggest that CYSLTR2 is involved in both early and late development of uveal melanoma. Whereas the CYSLTR2 p.L129Q mutation is likely to be the initiating oncogenic event, various mechanisms further increase the mutant allele abundance during tumour progression. This makes mutant CysLT2R an attractive therapeutic target in uveal melanoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07865-x.
Collapse
Affiliation(s)
- Rogier J Nell
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nino V Menger
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mieke Versluis
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Robert M Verdijk
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Pathology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Michele C Madigan
- Save Sight Institute and Department of Ophthalmology, University of Sydney, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
7
|
Nell RJ, van Steenderen D, Menger NV, Weitering TJ, Versluis M, van der Velden PA. Quantification of DNA methylation independent of sodium bisulfite conversion using methylation-sensitive restriction enzymes and digital PCR. Hum Mutat 2020; 41:2205-2216. [PMID: 32906203 PMCID: PMC7756443 DOI: 10.1002/humu.24111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 12/20/2022]
Abstract
Epigenetic regulation is important in human health and disease, but the exact mechanisms remain largely enigmatic. DNA methylation represents one epigenetic aspect but is challenging to quantify. In this study, we introduce a digital approach for the quantification of the amount and density of DNA methylation. We designed an experimental setup combining efficient methylation‐sensitive restriction enzymes with digital polymerase chain reaction (PCR) to quantify a targeted density of DNA methylation independent of bisulfite conversion. By using a stable reference and comparing experiments treated and untreated with these enzymes, copy number instability could be properly normalized. In silico simulations demonstrated the mathematical validity of the setup and showed that the measurement precision depends on the amount of input DNA and the fraction methylated alleles. This uncertainty could be successfully estimated by the confidence intervals. Quantification of RASSF1 promoter methylation in a variety of healthy and malignant samples and in a calibration curve confirmed the high accuracy of our approach, even in minute amounts of DNA. Overall, our results indicate the possibility of quantifying DNA methylation with digital PCR, independent of bisulfite conversion. Moreover, as the context‐density of methylation can also be determined, biological mechanisms can now be quantitatively assessed.
Collapse
Affiliation(s)
- Rogier J Nell
- Department of Ophthalmology, Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Debby van Steenderen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Nino V Menger
- Department of Ophthalmology, Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Thomas J Weitering
- Department of Ophthalmology, Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Mieke Versluis
- Department of Ophthalmology, Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Pieter A van der Velden
- Department of Ophthalmology, Leiden University Medical Center, Leiden, South Holland, The Netherlands
| |
Collapse
|
8
|
Souri Z, Wierenga APA, Mulder A, Jochemsen AG, Jager MJ. HLA Expression in Uveal Melanoma: An Indicator of Malignancy and a Modifiable Immunological Target. Cancers (Basel) 2019; 11:cancers11081132. [PMID: 31394860 PMCID: PMC6721545 DOI: 10.3390/cancers11081132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/17/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults, and gives rise to metastases in 50% of cases. The presence of an inflammatory phenotype is a well-known risk factor for the development of metastases. This inflammatory phenotype is characterized by the presence of high numbers of lymphocytes and macrophages, and a high expression of the HLA Class I and II antigens. An abnormal expression of HLA Class I may influence cytotoxic T lymphocyte (CTL) as well as Natural Killer (NK) cell responses. We provide a comprehensive review regarding the inflammatory phenotype in UM and the expression of locus- and allele-specific HLA Class I and of Class II antigens in primary UM and its metastases. Furthermore, we describe the known regulators and the role of genetics (especially chromosome 3 and BRCA-Associated Protein 1 (BAP1 status)), and, last but not least, the effect of putative therapeutic treatments on HLA expression.
Collapse
Affiliation(s)
- Zahra Souri
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Annemijn P A Wierenga
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Aart G Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|