1
|
Gargiulo E, Morande PE, Jeyakumar M, Rospape L, Paggetti J, Moussay E. Protocol for isolating leukemia-derived extracellular vesicles from the spleen of preclinical models of leukemia using ultracentrifugation. STAR Protoc 2024; 5:103244. [PMID: 39106179 PMCID: PMC11347847 DOI: 10.1016/j.xpro.2024.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024] Open
Abstract
Here, we present a protocol for the direct isolation of small extracellular vesicles (sEVs) from the spleen of preclinical murine models of leukemia using ultracentrifugation. We describe steps for tissue collection, sample preparation, ultracentrifugation-based isolation, and sEV characterization. This protocol allows for efficient enrichment of both leukemia and its microenvironment-derived sEV (LME-sEV), providing a valuable tool for studying their composition and functional roles. Potential applications include investigating the role of sEV in leukemia progression and identifying biomarkers. For complete details on the use and execution of this protocol, please refer to Gargiulo et al.1.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Pablo Elias Morande
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg; Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Maxmilan Jeyakumar
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Lucie Rospape
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jérôme Paggetti
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg.
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg.
| |
Collapse
|
2
|
Gargiulo E, Viry E, Morande PE, Largeot A, Gonder S, Xian F, Ioannou N, Benzarti M, Kleine Borgmann FB, Mittelbronn M, Dittmar G, Nazarov PV, Meiser J, Stamatopoulos B, Ramsay AG, Moussay E, Paggetti J. Extracellular Vesicle Secretion by Leukemia Cells In Vivo Promotes CLL Progression by Hampering Antitumor T-cell Responses. Blood Cancer Discov 2023; 4:54-77. [PMID: 36108149 PMCID: PMC9816815 DOI: 10.1158/2643-3230.bcd-22-0029] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/04/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023] Open
Abstract
Small extracellular vesicle (sEV, or exosome) communication among cells in the tumor microenvironment has been modeled mainly in cell culture, whereas their relevance in cancer pathogenesis and progression in vivo is less characterized. Here we investigated cancer-microenvironment interactions in vivo using mouse models of chronic lymphocytic leukemia (CLL). sEVs isolated directly from CLL tissue were enriched in specific miRNA and immune-checkpoint ligands. Distinct molecular components of tumor-derived sEVs altered CD8+ T-cell transcriptome, proteome, and metabolome, leading to decreased functions and cell exhaustion ex vivo and in vivo. Using antagomiRs and blocking antibodies, we defined specific cargo-mediated alterations on CD8+ T cells. Abrogating sEV biogenesis by Rab27a/b knockout dramatically delayed CLL pathogenesis. This phenotype was rescued by exogenous leukemic sEV or CD8+ T-cell depletion. Finally, high expression of sEV-related genes correlated with poor outcomes in CLL patients, suggesting sEV profiling as a prognostic tool. In conclusion, sEVs shape the immune microenvironment during CLL progression. SIGNIFICANCE sEVs produced in the leukemia microenvironment impair CD8+ T-cell mediated antitumor immune response and are indispensable for leukemia progression in vivo in murine preclinical models. In addition, high expression of sEV-related genes correlated with poor survival and unfavorable clinical parameters in CLL patients. See related commentary by Zhong and Guo, p. 5. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Elodie Viry
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Pablo Elías Morande
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Anne Largeot
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Susanne Gonder
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Feng Xian
- Proteomics of Cellular Signaling, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Nikolaos Ioannou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Mohaned Benzarti
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Felix Bruno Kleine Borgmann
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Neurosurgery, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg.,Luxembourg Centre of Neuropathology, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Michel Mittelbronn
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Luxembourg Centre of Neuropathology, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Luxembourg Centre of Neuropathology, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,National Center of Pathology, Laboratoire national de santé (LNS), Dudelange, Luxembourg.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gunnar Dittmar
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Proteomics of Cellular Signaling, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Petr V. Nazarov
- Multiomics Data Science Group, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Alan G. Ramsay
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Etienne Moussay
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Corresponding Authors: Jérôme Paggetti, Department of Cancer Research, Luxembourg Institute of Health, 6, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg. Phone: 352-26970-344; E-mail: ; and Etienne Moussay. Phone: 352-26970-232; E-mail:
| | - Jérôme Paggetti
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Corresponding Authors: Jérôme Paggetti, Department of Cancer Research, Luxembourg Institute of Health, 6, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg. Phone: 352-26970-344; E-mail: ; and Etienne Moussay. Phone: 352-26970-232; E-mail:
| |
Collapse
|
3
|
Gargiulo E, Viry E, Moussay E, Paggetti J. Small extracellular vesicles: multi-faceted tools for leukemia immune evasion in vivo. Oncoimmunology 2022; 11:2127507. [PMID: 36185808 PMCID: PMC9519017 DOI: 10.1080/2162402x.2022.2127507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recently, small extracellular vesicles (sEVs) secreted in vivo from chronic lymphocytic leukemia (CLL) preclinical murine models were characterized. Leukemia microenvironment sEV (LME-sEVs) selectively target CD8+ T-cells, inducing exhaustion and hampering anti-tumor immune response. Additionally, a sEV-related gene expression correlated with patient treatment-free survival, overall survival and clinical parameters.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Hematology, CLL Laboratory, Rigshospitalet, Copenhagen, Denmark.,PERSIMUNE, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Elodie Viry
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jerome Paggetti
- Tumor Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
4
|
Elgamal S, Cocucci E, Sass EJ, Mo XM, Blissett AR, Calomeni EP, Rogers KA, Woyach JA, Bhat SA, Muthusamy N, Johnson AJ, Larkin KT, Byrd JC. Optimizing extracellular vesicles' isolation from chronic lymphocytic leukemia patient plasma and cell line supernatant. JCI Insight 2021; 6:e137937. [PMID: 34369387 PMCID: PMC8410027 DOI: 10.1172/jci.insight.137937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL) and very likely all cancer types, extracellular vesicles (EVs) are a common mechanism by which intercellular messages are communicated between normal, diseased, and transformed cells. Studies of EVs in CLL and other cancers have great variability and often lack reproducibility. For CLL patient plasma and cell lines, we sought to characterize current approaches used in isolating EV products and understand whether cell culture-conditioned media or complex biological fluids confound results. Utilizing nanoparticle tracking analysis, protein quantification, and electron microscopy, we show that ultracentrifugation with an OptiPrep cushion can effectively minimize contaminants from starting materials including plasma and conditioned media of CLL cell lines grown in EV-depleted complete RPMI media but not grown in the serum-free media AIM V commonly used in CLL experimental work. Moreover, we confirm the benefit of including 25 mM trehalose in PBS during EV isolation steps to reduce EV aggregation, to preserve function for downstream applications and characterization. Furthermore, we report the highest particles/μg EVs were obtained from our CLL cell lines utilizing the CELLine bioreactor flask. Finally, we optimized a proliferation assay that offers a functional evaluation of our EVs with minimal sample requirements.
Collapse
Affiliation(s)
- Sara Elgamal
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center
| | - Emanuele Cocucci
- Comprehensive Cancer Center.,Division of Pharmaceutics, College of Pharmacy
| | - Ellen J Sass
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center
| | - Xiaokui M Mo
- Comprehensive Cancer Center.,Department of Biomedical Informatics, College of Medicine
| | | | | | - Kerry A Rogers
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center
| | - Seema A Bhat
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center.,College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Amy J Johnson
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center.,Division of Pharmaceutics, College of Pharmacy
| | - Karilyn T Larkin
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, College of Medicine.,Comprehensive Cancer Center.,Division of Pharmaceutics, College of Pharmacy.,College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Gargiulo E, Morande PE, Largeot A, Moussay E, Paggetti J. Diagnostic and Therapeutic Potential of Extracellular Vesicles in B-Cell Malignancies. Front Oncol 2020; 10:580874. [PMID: 33117718 PMCID: PMC7550802 DOI: 10.3389/fonc.2020.580874] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EV), comprising microvesicles and exosomes, are particles released by every cell of an organism, found in all biological fluids, and commonly involved in cell-to-cell communication through the transfer of cargo materials such as miRNA, proteins, and immune-related ligands (e.g., FasL and PD-L1). An important characteristic of EV is that their composition, abundance, and roles are tightly related to the parental cells. This translates into a higher release of characteristic pro-tumor EV by cancer cells that leads to harming signals toward healthy microenvironment cells. In line with this, the key role of tumor-derived EV in cancer progression was demonstrated in multiple studies and is considered a hot topic in the field of oncology. Given their characteristics, tumor-derived EV carry important information concerning the state of tumor cells. This can be used to follow the outset, development, and progression of the neoplasia and to evaluate the design of appropriate therapeutic strategies. In keeping with this, the present brief review will focus on B-cell malignancies and how EV can be used as potential biomarkers to follow disease progression and stage. Furthermore, we will explore several proposed strategies aimed at using biologically engineered EV for treatment (e.g., drug delivery mechanisms) as well as for impairing the biogenesis, release, and internalization of cancer-derived EV, with the final objective to disrupt tumor–microenvironment communication.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Pablo Elías Morande
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Anne Largeot
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jérôme Paggetti
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
6
|
Elgamal S, Colombo F, Cottini F, Byrd JC, Cocucci E. Imaging intercellular interaction and extracellular vesicle exchange in a co-culture model of chronic lymphocytic leukemia and stromal cells by lattice light-sheet fluorescence microscopy. Methods Enzymol 2020; 645:79-107. [PMID: 33565979 DOI: 10.1016/bs.mie.2020.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in live cell imaging allow investigating processes that take place over the entire cell volume with unprecedented time and spatial resolution. Here we describe a protocol to study intercellular communication, including extracellular vesicle exchange, between cancer cells and their microenvironment, using lattice light sheet fluorescence microscopy. While the described protocol is intended to study the interactions between chronic lymphocytic leukemia cells and bone marrow stromal cells, many components of it can be applied to study other cancers of hematopoietic or solid tumor origin, as well as to characterize other modalities of intercellular communication.
Collapse
Affiliation(s)
- Sara Elgamal
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Francesca Cottini
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States; Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States; College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
7
|
Bernardi S, Zanaglio C, Farina M, Polverelli N, Malagola M, Russo D. dsDNA from extracellular vesicles (EVs) in adult AML. Ann Hematol 2020; 100:1355-1356. [PMID: 32474620 PMCID: PMC8043941 DOI: 10.1007/s00277-020-04109-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/27/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Simona Bernardi
- Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia, University of Brescia, 25123, Brescia, Italy. .,CREA Laboratory (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili di Brescia, 25123, Brescia, Italy.
| | - C Zanaglio
- Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia, University of Brescia, 25123, Brescia, Italy.,CREA Laboratory (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - M Farina
- Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia, University of Brescia, 25123, Brescia, Italy
| | - N Polverelli
- Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia, University of Brescia, 25123, Brescia, Italy
| | - M Malagola
- Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia, University of Brescia, 25123, Brescia, Italy
| | - D Russo
- Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia, University of Brescia, 25123, Brescia, Italy
| |
Collapse
|
8
|
Bernardi S, Foroni C, Zanaglio C, Re F, Polverelli N, Turra A, Morello E, Farina M, Cattina F, Gandolfi L, Zollner T, Buttini EA, Malagola M, Russo D. Feasibility of tumor‑derived exosome enrichment in the onco‑hematology leukemic model of chronic myeloid leukemia. Int J Mol Med 2019; 44:2133-2144. [PMID: 31638195 PMCID: PMC6844640 DOI: 10.3892/ijmm.2019.4372] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/12/2019] [Indexed: 01/18/2023] Open
Abstract
Due to the discovery of their role in intra-cellular communications, exosomes, which carry information specific to the cell of origin, have garnered considerable attention in cancer research. Moreover, there is evidence to suggest the possibility of isolating different exosome sub-populations based on target antigens at the cell surface. Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia characterized by the break-point cluster region-proto-oncogene 1 tyrosine-protein kinase (BCR-ABL1) fusion-gene, derived from the t (9;22) translocation. Tyrosine kinase inhibitors (TKIs) target BCR-ABL1 protein and induce major or deep molecular responses in the majority of patients. Despite the fact that several studies have demonstrated the persistence of leukemic cells in the bone marrow niche, even following treatment, TKIs prolong patient survival time and facilitate treatment-free remission. These characteristics render CML a plausible model for investigating the feasibility of tumor-derived exosome fraction enrichment. In the present study, patients in the chronic phase (CP) of CML were treated with TKIs, and the quantification of the BCR-ABL1 exosomal transcript was performed using digital PCR (dPCR). The possibility of tumor-derived exosomes enrichment was confirmed, and for the first time, to the best of our knowledge, the detection of the BCR-ABL1 transcript highlighted the presence of active leukemic cells in patients with CP-CML. According to these findings, tumor-derived exosomes may be considered a novel tool for the identification of active leukemic cells, and for the assessment of innovative monitoring focused on the biological functions of exosomes in CML.
Collapse
Affiliation(s)
- Simona Bernardi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Chiara Foroni
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Camilla Zanaglio
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Federica Re
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Nicola Polverelli
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Alessandro Turra
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Enrico Morello
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Mirko Farina
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Federica Cattina
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Lisa Gandolfi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Tatiana Zollner
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Eugenia Accorsi Buttini
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Michele Malagola
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Domenico Russo
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| |
Collapse
|
9
|
Gargiulo E, Paggetti J, Moussay E. Hematological Malignancy-Derived Small Extracellular Vesicles and Tumor Microenvironment: The Art of Turning Foes into Friends. Cells 2019; 8:cells8050511. [PMID: 31137912 PMCID: PMC6562645 DOI: 10.3390/cells8050511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 02/07/2023] Open
Abstract
Small extracellular vesicles (small EVs) are commonly released by all cells, and are found in all body fluids. They are implicated in cell to cell short- and long-distance communication through the transfer of genetic material and proteins, as well as interactions between target cell membrane receptors and ligands anchored on small EV membrane. Beyond their canonical functions in healthy tissues, small EVs are strategically used by tumors to communicate with the cellular microenvironment and to establish a proper niche which would ultimately allow cancer cell proliferation, escape from the immune surveillance, and metastasis formation. In this review, we highlight the effects of hematological malignancy-derived small EVs on immune and stromal cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, 84, val fleuri, L-1526 Luxembourg, Luxembourg.
| | - Jerome Paggetti
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, 84, val fleuri, L-1526 Luxembourg, Luxembourg.
| | - Etienne Moussay
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, 84, val fleuri, L-1526 Luxembourg, Luxembourg.
| |
Collapse
|