1
|
Brisotto G, Dhibi R, Dal Col J, Muraro E. Evaluation of NF-kB Nuclear Translocation in Natural Killer Cells by Imaging Multispectral Flow Cytometry as a Marker of Anticancer Immune Activation. Methods Mol Biol 2025; 2930:65-78. [PMID: 40402448 DOI: 10.1007/978-1-0716-4558-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Innate immunity has a potent antitumor function and occurs as the first line of defense in cancer immunosurveillance. Natural killer (NK) cells are one of the most important effectors of innate immunity and exert their cytotoxic activity as a result of signals mediated by activating and inhibitory receptors able to recognize ligands on cancer cells. Of note, NK cells play a pivotal role in the efficacy of anticancer therapies, as those employing monoclonal antibodies, by mediating antibody-dependent cell cytotoxicity. Additionally, some types of chemotherapeutics, such as taxanes, can modulate NK cell function. Thus, evaluating the activation state of NK cells is crucially useful for both monitoring the response to therapy and optimizing therapeutic strategies for improving patient's outcome.NK cell function is usually assessed by flow cytometry assays evaluating markers like perforin and granzyme or cytotoxic activity, which, however, represent late end point measures of NK cell activation. In this context, NF-kB represents an important mediator of pro-inflammatory gene expression in several immune cells, including NK cells. Upon activation, the NF-kB p65 subunit translocates from the cytoplasm to the nucleus and promotes the transcription of various genes, as those encoding for perforin, granzyme, and interferon-gamma. Therefore, assessing the nuclear translocation of this transcription factor represents a valuable strategy to study the triggering of immune effectors. In this chapter, we describe an imaging multispectral flow cytometry assay able to evaluate the nuclear translocation of the NF-kB p65 in NK cells as a marker of anticancer immune activation.
Collapse
Affiliation(s)
- Giulia Brisotto
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Raja Dhibi
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.
| | - Elena Muraro
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
2
|
Pu J, Sharma A, Liu T, Hou J, Schmidt‐Wolf IGH. Synergistic integration of histone deacetylase inhibitors apparently enhances the cytokine-induced killer cell efficiency in multiple myeloma via the NKG2D pathway. Clin Transl Immunology 2024; 13:e1500. [PMID: 38529413 PMCID: PMC10961996 DOI: 10.1002/cti2.1500] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Objectives The rapid recognition of epigenetic manipulation's potential in restricting cancer cell capabilities spurred translational initiatives, including histone deacetylase inhibitors (HDACis). Clinical trials on multiple myeloma (MM) demonstrated substantial benefits of HDACis, coupled with promising outcomes from cytokine-induced killer cell (CIK) immunotherapy. Intriguingly, the unexplored synergy of HDACis and CIK cell immunotherapy in MM prompted our study. Methods We examined clinically relevant HDACis (panobinostat/LBH589 and romidepsin) alongside CIK cells derived from peripheral blood mononuclear cells across diverse MM cell lines (U266, RPMI8226, OPM-2 and NCI-H929). Utilising various in vitro methodologies, we investigated how HDACis enhance CIK cell lysis of myeloma cells through NKG2D/NKG2D ligand interactions. Results The results of our analysis indicated several key findings. (1) Enhanced cytotoxicity of CIK cells in MM cells when combined with HDACis. (2) Significant increase in apoptosis, suggesting HDACis and CIK may together enhance apoptotic effects in specific MM cell lines. (3) Elevated IFN-γ secretion and alterations in granzyme B secretion because of the independent activity of HDACis. (4) Notably, HDACis increased the expression of MICA/B and ULBP2, crucial for inducing antitumor cytotoxicity of NKT cells. Validation through NKG2D receptor blocking in CIK cells with a purified mouse antihuman NKG2D antibody further supported our findings. Conclusions Our analyses provide sufficient evidence to consider this clinically forgotten instance (HDACis-CIK cell combination) as a therapeutic priority for MM treatment. Furthermore, we suggest that NKG2D/NKG2D-ligand interactions activating NK/NKT cells may contribute to enhanced myeloma cell lysis in response to HDACis treatment by CIK cells.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) BonnUniversity Hospital BonnBonnGermany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) BonnUniversity Hospital BonnBonnGermany
| | - Ting Liu
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Jian Hou
- Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ingo GH Schmidt‐Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) BonnUniversity Hospital BonnBonnGermany
| |
Collapse
|
3
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Martínez-Pérez A, Gonzalez-Rodriguez AP, Payer ÁR, González-García E, Aguilar-García C, González-Rodríguez S, López-Soto A, García-Torre A, Gonzalez S. BTLA dysregulation correlates with poor outcome and diminished T cell-mediated antitumor responses in chronic lymphocytic leukemia. Cancer Immunol Immunother 2023; 72:2529-2539. [PMID: 37041226 PMCID: PMC10264494 DOI: 10.1007/s00262-023-03435-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
Patients with chronic lymphocytic leukemia (CLL) progressively develop marked immunosuppression, dampening innate and adaptive-driven antitumor responses. However, the underlying mechanisms promoting immune exhaustion are largely unknown. Herein, we provide new insights into the role of BTLA/HVEM axis promoting defects in T cell-mediated responses against leukemic cells. Increased expression of BTLA, an inhibitory immune checkpoint, was detected on the surface of CD4 + and CD8 + T lymphocytes in patients with CLL. Moreover, high levels of BTLA on CD4 + T cells correlated with diminished time to treatment. Signaling through BTLA activation led to decreased IL-2 and IFN-γ production ex vivo, whereas BTLA/HVEM binding disruption enhanced IFN-γ + CD8 + T lymphocytes. Accordingly, BTLA blockade in combination with bispecific anti-CD3/anti-CD19 antibody promoted CD8 + T cell-mediated anti-leukemic responses. Finally, treatment with an anti-BLTA blocking monoclonal antibody alone or in combination with ibrutinib-induced leukemic cell depletion in vitro. Altogether, our data reveal that BTLA dysregulation has a prognostic role and is limiting T cell-driven antitumor responses, thus providing new insights about immune exhaustion in patients with CLL.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, Universidad de Oviedo, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, Universidad de Oviedo, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
| | - Alejandra Martínez-Pérez
- Department of Functional Biology, Immunology, Universidad de Oviedo, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
| | - Ana P Gonzalez-Rodriguez
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Ángel R Payer
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Esther González-García
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
- Department of Hematology, Hospital de Cabueñes, 33203, Gijón, Spain
| | - Candelaria Aguilar-García
- Department of Functional Biology, Immunology, Universidad de Oviedo, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
| | - Sara González-Rodríguez
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, 33006, PharmacologyOviedo, Spain
| | - Alejandro López-Soto
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
- Department of Biochemistry and Molecular Biology, Universidad of Oviedo, 33006, Oviedo, Spain
| | - Alejandra García-Torre
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, Universidad de Oviedo, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| |
Collapse
|
4
|
Improving NK cell function in multiple myeloma with NKTR-255, a novel polymer-conjugated human IL-15. Blood Adv 2023; 7:9-19. [PMID: 35882498 DOI: 10.1182/bloodadvances.2022007985] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 01/18/2023] Open
Abstract
Multiple myeloma (MM) is characterized by an immunosuppressive microenvironment that enables tumor development. One of the mechanisms of immune evasion used by MM cells is the inhibition of natural killer (NK) cell effector functions; thus, the restoration of NK cell antitumor activity represents a key goal to increase tumor cell recognition, avoid tumor escape and potentially enhancing the effect of other drugs. In this study, we evaluated the ability of the investigational medicine NKTR-255, an IL-15 receptor agonist, to engage the IL-15 pathway and stimulate NK cells against MM cells. We observed that incubation with NKTR-255 was able to tilt the balance toward an activated phenotype in NK cells isolated from peripheral blood mononuclear cells of patients with MM, with increased expression of activating receptors on the surface of treated NK cells. This resulted in an enhanced degranulation, cytokine release, and anti-tumor cytotoxicity when the NK cells were exposed to both MM cell lines and primary MM cells. We further evaluated the in vivo effect of NKTR-255 in fully humanized immunocompetent mice subcutaneously engrafted with H929 MM cells. Compared with placebo, weekly injection of the mice with NKTR-255 increased the number of circulating NK cells in peripheral blood and delayed tumor growth. Finally, we observed that combination of NKTR-255 with the anti-CD38 antibody, daratumumab, was effective against MM cells in vitro and in vivo. Taken together, our data suggest a significant impact of NKTR-255 in inducing NK cell function against MM cells with important translational implications.
Collapse
|
5
|
Uddin MB, Roy KR, Hill RA, Roy SC, Gu X, Li L, Zhang QJ, You Z, Liu YY. p53 missense mutant G242A subverts natural killer cells in sheltering mouse breast cancer cells against immune rejection. Exp Cell Res 2022; 417:113210. [PMID: 35597298 DOI: 10.1016/j.yexcr.2022.113210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 11/15/2022]
Abstract
Cancer cells acquire immunoediting ability to evade immune surveillance and thus escape eradication. It is widely known that mutant proteins encoded from tumor suppressor TP53 exhibit gain-of-function in cancer cells, thereby promoting progression; however, how mutant p53 contributes to the sheltering of cancer cells from host anticancer immunity remains unclear. Herein, we report that murine p53 missense mutation G242A (corresponding to human G245A) suppresses the activation of host natural killer (NK) cells, thereby enabling breast cancer cells to avoid immune assault. We found that serial injection of EMT6 breast cancer cells that carry wild-type (wt) Trp53, like normal fibroblasts, promoted NK activity in mice, while SVTneg2 cells carrying Trp53 G242A+/+ mutation decreased NK cell numbers and increased CD8+ T lymphocyte numbers in spleen. Innate immunity based on NK cells and CD8 T cells was reduced in p53 mutant-carrying transgenic mice (Trp53 R172H/+, corresponding to human R175H/+). Further, upon co-culture with isolated NK cells, EMT6 cells substantively activated NK cells and proliferation thereof, increasing interferon-gamma (IFN-γ) production; however, SVTneg2 cells suppressed NK cell activation. Further mechanistic study elucidated that p53 can modulate expression by cancer cells of Mult-1 and H60a, which are activating and inhibitory ligands for NKG2D receptors of NK cells, respectively, to enhance immune surveillance against cancer. Our findings demonstrate that wt p53 is requisite for NK cell-based immune recognition and elimination of cancerous cells, and perhaps more importantly, that p53 missense mutant presence in cancer cells impairs NK cell-attributable responses, thus veiling cancerous cells from host immunity and enabling cancer progression.
Collapse
Affiliation(s)
- Mohammad B Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Kartik R Roy
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Ronald A Hill
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Li Li
- Laboratory of Translational Cancer Research, Tom & Gayle Benson Cancer Center, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Qian-Jin Zhang
- Department of Biology, Xavier University of Louisiana, New Orleans, LA, USA
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University, New Orleans, LA, USA
| | - Yong-Yu Liu
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA, USA.
| |
Collapse
|
6
|
TIMP1 and TIMP2 Downregulate TGFβ Induced Decidual-like Phenotype in Natural Killer Cells. Cancers (Basel) 2021; 13:cancers13194955. [PMID: 34638439 PMCID: PMC8507839 DOI: 10.3390/cancers13194955] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer patients are characterized by NK cells with altered surface markers, such as CD56 brightness, CD9, CD49a (pro-angiogenic) and PD-1, and TIM-3 (exhaustion), that favor immune escape. Transforming growth factor-beta (TGFβ) is a major tumor-derived cytokine that favors cancer growth and supports pro-angiogenic activities in NK cells by inducing pro-angiogenic molecules. TIMP-1 and TIMP-2 play a crucial role in extracellular matrix (ECM) regulation, wound healing, pregnancy and cancer, and there is increasing evidence that they are immune-modulatory. We found that recombinant TIMP-1 and -2 can partially contrast the induction of pro-tumor/pro-angiogenic decidual-like polarization of NK cells by TGFβ. Abstract Natural Killer (NK) cells have been found to be anergic, exhausted and pro-angiogenic in cancers. NK cell from healthy donors, exposed to TGFβ, acquire the CD56brightCD9+CD49a+ decidual-like-phenotype, together with decreased levels of NKG2D activation marker, increased levels of TIM-3 exhaustion marker, similar to cancer-associated NK cells. Tissue inhibitors of metalloproteases (TIMPs) exert dual roles in cancer. The role of TIMPs in modulating immune cells is a very novel concept, and the present is the first report studying their ability to contrast TGFβ action on NK cells. Here, we investigated the effects of TIMP1 and TIMP2 recombinant proteins in hindering decidual-like markers in NK cells, generated by polarizing cytolytic NK cells with TGFβ. The effects of TIMP1 or TIMP2 on NK cell surface antigens were determined by multicolor flow cytometry. We found that TIMP1 and TIMP2 were effective in interfering with TGFβ induced NK cell polarization towards a decidual-like-phenotype. TIMP1 and TIMP2 counteracted the effect of TGFβ in increasing the percentage of CD56bright, CD16−, CD9+ and CD49a+, and restoring normal levels for TIMP 1 and 2 also inhibited decrease levels of the activation marker NKG2D induced by TGFβ and decreased the TGFβ upregulated exhaustion marker TIM-3. NK cell degranulation capabilities against K562 cells were also decreased by TGFβ and not by TIMP1 or TIMP2. TIMP1 treatment could partially restore degranulation marker CD107a expression. Treatment with recombinant TIMP-1 or TIMP-2 showed a trend, although not statistically significant, to decrease CD49a+ and TIM-3+ expression and increase NKG2D in peripheral blood NK cells exposed to conditioned media from colon cancer cell lines. Our results suggest a potential role of TIMPs in controlling the tumor-associated cytokine TGFβ-induced NK cell polarization. Given the heterogeneity of released factors within the TME, it is clear that TGFβ stimulation represents a model to prove TIMP’s new properties, but it cannot be envisaged as a soloist NK cell polarizing agent. Therefore, further studies from the scientific community will help defining TIMPs immunomodulatory activities of NK cells in cancer, and their possible future diagnostic–therapeutic roles.
Collapse
|