1
|
Yang M, Chen X, Zhang M, Zhang X, Xiao D, Xu H, Lu M. hUC-MSC preserves erectile function by restoring mitochondrial mass of penile smooth muscle cells in a rat model of cavernous nerve injury via SIRT1/PGC-1a/TFAM signaling. Biol Res 2025; 58:8. [PMID: 39871297 PMCID: PMC11773750 DOI: 10.1186/s40659-024-00578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/09/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Cavernous nerve injury-induced erectile dysfunction (CNI-ED) is a common complication following radical prostatectomy and severely affects patients' quality of life. The mitochondrial impairment in corpus cavernosum smooth muscle cells (CCSMCs) may be an important pathological mechanism of CNI-ED. Previous studies have shown that transplantation of human adipose derived stem cells (ADSC) can alleviate CNI-ED in a rat model. However, little is known about the effect of human umbilical cord mesenchymal stem cells (hUC-MSC) on CNI-ED. It remains unclear whether hUC-MSC can ameliorate mitochondrial damage in CCSMCs. In this study, we aimed to investigate the impacts of hUC-MSC on the mitochondrial mass and function of CCSMCs, as well as elucidate its underlying molecular mechanism. METHODS The CNI-ED rat model was established by bilaterally crushing cavernous nerves. Subsequently, hUC-MSC were transplanted into the cavernosum and ADSC were injected as a positive control group. Erectile function evaluation and histological detection were performed 4 weeks after cell transplantation. In vitro, CCSMCs underwent hypoxia and were then co-cultured with ADSC or hUC-MSC using a transwell system. The mitochondrial mass and function, as well as signaling pathways, were investigated. To explore the role of the SIRT1/PGC-1α/TFAM pathway in regulating mitochondrial biogenesis of CCSMCs, we knocked down SIRT1 by siRNA. RESULTS The administration of hUC-MSC significantly improved erectile function of CNI-ED rats and reduced the ratio of collagen to smooth muscle. Specifically, hUC-MSC treatment restored mitochondrial mass and function in CCSMCs injured by CNI or hypoxia, and inhibited the apoptosis of CCSMCs. Mechanistically, the application of hUC-MSC activated SIRT1/PGC-1α/TFAM pathway both in rat penile tissues and CCSMCs. In addition, knockdown of SIRT1 in CCSMCs abolished the protective effects of hUC-MSC on mitochondrial mass and function, while leading to an increase in cellular apoptosis. CONCLUSIONS hUC-MSC contribute to the recovery of erectile function in CNI-ED rats by restoring mitochondrial mass and function of CCSMCs through the SIRT1/PGC-1α/TFAM pathway. Our present study offers new insights into the role and molecular mechanisms of hUC-MSC in regulating mitochondrial homeostasis, thereby facilitating the restoration of the erectile function in CNI-ED.
Collapse
Affiliation(s)
- Mengbo Yang
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Xinda Chen
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ming Zhang
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Xiaolin Zhang
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Dongdong Xiao
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Huiming Xu
- State Laboratory of Systems Medicine for Cancer, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Mujun Lu
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| |
Collapse
|
2
|
Lee HJ, Hossain R, Baek CH, Lee CJ, Hwang SC. Intra-Articular Injection of Stem Cells for the Regeneration of Knee Joint Cartilage: a Therapeutic Option for Knee Osteoarthritis - a Narrative Review. Biomol Ther (Seoul) 2025; 33:86-94. [PMID: 39632656 PMCID: PMC11704397 DOI: 10.4062/biomolther.2024.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Current approaches to regulating osteoarthritis primarily focus on symptom management; however, these methods often have significant side effects and may not be suitable for long-term care. As an alternative to conventional treatments, injecting stem cells into knee joint cartilage is a promising option for repairing damaged cartilage. In this review, we outline the general procedure for stem cell treatment of knee joint cartilage regeneration, emphasizing the potential of intra-articular stem cell injections as a therapeutic option for osteoarthritis. We examined and summarized patient evaluation and preparation for knee joint stem cell therapy, stem cell harvesting, stem cell preparation, injection procedures for stem cell therapy, post-injection care and monitoring, potential outcomes of stem cell therapy, and considerations and risks associated with stem cell therapy. Overall, stem cell injections for knee joint cartilage damage represent a promising frontier in orthopedic care. They offer potential benefits such as pain and inflammation reduction, promotion of cartilage repair and regeneration, and the possibility of avoiding more invasive treatments such as knee surgery. Ongoing collaboration among researchers, clinicians, and regulatory organizations is crucial for advancing this field and translating scientific discoveries into effective clinical applications.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Rajib Hossain
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chang-Heon Baek
- Department of Orthopaedic Surgery and Institute of Health Sciences, Gyeongsang National University College of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery and Institute of Health Sciences, Gyeongsang National University College of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| |
Collapse
|
3
|
Kangari P, Salahlou R, Vandghanooni S. Harnessing the Therapeutic Potential of Mesenchymal Stem Cells in Cancer Treatment. Adv Pharm Bull 2024; 14:574-590. [PMID: 39494266 PMCID: PMC11530882 DOI: 10.34172/apb.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer, as a complicated disease, is considered to be one of the major leading causes of death globally. Although various cancer therapeutic strategies have been established, however, some issues confine the efficacies of the treatments. In recent decades researchers for finding efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord (UC), menses blood, Wharton's jelly (WJ), adipose tissue and dental pulp (DP). These cells are capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs are an excellent living carrier for delivery of therapeutic genes and chemical agents to target tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are several challenges associated with the use of MSCs and their exosomes in the field of therapy that need to be considered. This review explores the significance of MSCs in cell-based therapy, focusing on their homing properties and immunomodulatory characteristics. It also examines the potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating the signal transduction pathways of cancer cells.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Yang J, Zhang X, Wang G, Ma S, Yu Y, Liao C, Wang Z, Liang C, Li M, Tian W, Liao L. ApoSEVs-Mediated Modulation of Versatile Target Cells Promotes Diabetic Wound Healing: Unveiling a Promising Strategy. Int J Nanomedicine 2023; 18:6955-6977. [PMID: 38026535 PMCID: PMC10676647 DOI: 10.2147/ijn.s436350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Diabetic chronic wounds present a formidable challenge in clinical management, lacking effective treatment options. Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy for tissue repair and regeneration. However, transplanted MSCs often undergo rapid apoptosis, giving rise to heterogeneous extracellular vesicles (EVs), including apoptotic bodies (apoBDs) and apoptotic small extracellular vesicles (apoSEVs). The potential stimulatory role of these EVs in diabetic wound healing remains unknown. Methods In this study, we investigated the effects of apoSEVs derived from adipose-derived mesenchymal/stromal cells (ADSCs) on the recovery of diabetic wounds by modulating the function of versatile target cells. First, we characterized the apoSEVs and apoBDs derived from apoptotic ADSCs. Subsequently, we evaluated the effects of apoSEVs and apoBDs on macrophages, endothelial cells, and fibroblasts, three essential cell types in wound healing, under high-glucose conditions. Furthermore, we developed a gelatin methacryloyl (GelMA) hydrogel for the sustained release of apoSEVs and investigated its therapeutic effects on wound healing in type 2 diabetic mice in vivo. Results apoSEVs facilitated the polarization of M1 phenotype macrophages to M2 phenotype, promoted proliferation, migration, and tube formation of endothelial cells, and enhanced fibroblast proliferation and migration. However, apoBDs failed to improve the function of endothelial cells and fibroblasts. In vivo, the apoSEVs-loaded GelMA effectively promoted wound healing by facilitating collagen fiber deposition, angiogenesis, and immune regulation. Conclusion Our study elucidates the beneficial effects of apoSEVs on wound recovery in diabetes and introduces a novel strategy for diabetic wound treatment based on apoSEVs.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xuanhao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Guanyu Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Shixing Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yejia Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Chengcheng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Zhuo Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
5
|
Sharqawi A, Mansour MF, Elatrash GA, Ismail EA, Ralph D, El-Sakka AI. Role of adipose-derived stem cells in healing surgically induced trauma of the rat's tunica albuginea. Sex Med 2023; 11:qfad058. [PMID: 38028732 PMCID: PMC10661659 DOI: 10.1093/sexmed/qfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Injection of adipose-derived stem cells (ADSCs) into the injured tunica albuginea (TA) may prevent fibrosis, restore the balance between pro- and antifibrotic pathways, and potentially mitigate erectile dysfunction caused by abnormal TA healing. Aim To assess the potential role of ADSC injection on structural, ultrastructural, functional, and molecular changes in surgically induced trauma of the rat's TA. Methods Forty adult male albino Wistar rats were divided into 5 groups of 8 rats each: group 1, sham; group 2, injury to TA without treatment; group 3, injury to TA and suture repair; group 4, injury to TA and injection of ADSCs without suture repair; group 5, injury to TA followed by injection of ADSCs and suture repair. Outcomes After 6 weeks, all groups were subjected to functional, histologic, and ultrastructural examination and molecular expression of healing growth factors. Results The intracavernous pressure (ICP; mean ± SD) was 114 ± 2, 32 ± 2, 65 ± 2, 68 ± 2, and 111 ± 2 mm Hg in groups 1 to 5, respectively. There were significant differences in ICP between each of groups 3 to 5 and group 2 (P < .05), and groups 3 and 4 each had significant differences with group 1 (P < .05). No significant difference in ICP occurred between groups 3 and 4 (P > .05). There were significant histologic and ultrastructural alterations in tunical tissues from group 2; however, these changes were markedly less in group 5 in terms of lower levels of fibrotic changes, elastosis, and superior overall neuroendothelial expression. Groups 3 and 4 showed improved structural and ultrastructural parameters when compared with group 2. Group 5 demonstrated lower levels of transforming growth factor β1 and basic fibroblast growth factor expression. Clinical Implications This experimental model may encourage administration of ADSCs to prevent the deleterious effects of trauma to the TA. Strengths and Limitations Injecting ADSCs can improve the healing process and erectile dysfunction in a rat model following TA injury, and combining ADSC injection with surgical suturing resulted in superior outcomes. The main limitation was the absence of long-term ICP measurements and a longer follow-up period that may provide further insight into the chronic phase of the healing process. Conclusion ADSC injection may prevent structural, ultrastructural, functional, and molecular alterations in surgically induced trauma of the rat's TA and enhance the effect of tunical suturing after trauma.
Collapse
Affiliation(s)
| | - Mona F Mansour
- Department of Physiology, Suez Canal University, Ismailia 4111, Egypt
| | - Gamal A Elatrash
- Department of Urology, Suez Canal University, Ismailia 4111, Egypt
| | - Ezzat A Ismail
- Department of Urology, Suez Canal University, Ismailia 4111, Egypt
| | - David Ralph
- Institute of Urology, University College of London Hospital, London W1G 8PH, United Kingdom
| | - Ahmed I El-Sakka
- Department of Urology, Suez Canal University, Ismailia 4111, Egypt
| |
Collapse
|
6
|
Ghasemi Darestani N, Gilmanova AI, Al-Gazally ME, Zekiy AO, Ansari MJ, Zabibah RS, Jawad MA, Al-Shalah SAJ, Rizaev JA, Alnassar YS, Mohammed NM, Mustafa YF, Darvishi M, Akhavan-Sigari R. Mesenchymal stem cell-released oncolytic virus: an innovative strategy for cancer treatment. Cell Commun Signal 2023; 21:43. [PMID: 36829187 PMCID: PMC9960453 DOI: 10.1186/s12964-022-01012-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/10/2022] [Indexed: 02/26/2023] Open
Abstract
Oncolytic viruses (OVs) infect, multiply, and finally remove tumor cells selectively, causing no damage to normal cells in the process. Because of their specific features, such as, the ability to induce immunogenic cell death and to contain curative transgenes in their genomes, OVs have attracted attention as candidates to be utilized in cooperation with immunotherapies for cancer treatment. This treatment takes advantage of most tumor cells' inherent tendency to be infected by certain OVs and both innate and adaptive immune responses are elicited by OV infection and oncolysis. OVs can also modulate tumor microenvironment and boost anti-tumor immune responses. Mesenchymal stem cells (MSC) are gathering interest as promising anti-cancer treatments with the ability to address a wide range of cancers. MSCs exhibit tumor-trophic migration characteristics, allowing them to be used as delivery vehicles for successful, targeted treatment of isolated tumors and metastatic malignancies. Preclinical and clinical research were reviewed in this study to discuss using MSC-released OVs as a novel method for the treatment of cancer. Video Abstract.
Collapse
Affiliation(s)
| | - Anna I Gilmanova
- Department of Prosthetic Dentistry of the I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Angelina O Zekiy
- Department of Prosthetic Dentistry of the I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Saif A J Al-Shalah
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Mohammad Darvishi
- Department of Aerospace and Subaquatic Medicine, Infectious Diseases and Tropical Medicine Research Center (IDTMRC), AJA University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany.,Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
7
|
Zhao Y, Wang X, Nie K. IRF1 promotes the chondrogenesis of human adipose-derived stem cells through regulating HILPDA. Tissue Cell 2023; 82:102046. [PMID: 36933274 DOI: 10.1016/j.tice.2023.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Osteoarthritis is a main cause of deformity in aging people. The chondrogenesis of human adipose-derived stem cells (hADSCs) has a positive effect on the cure of osteoarthritis. However, the regulatory mechanism of hADSC chondrogenesis still needs further exploration. This research investigates the role of interferon regulatory factor 1 (IRF1) in the chondrogenesis of hADSCs. METHODS hADSCs were purchased and cultured. The interaction between IRF1 and hypoxia inducible lipid droplet associated (HILPDA) was predicted by bioinformatics analysis, and verified through dual-luciferase reporter and chromatin immunoprecipitation assays. The expressions of IRF1 and HILPDA in osteoarthritis cartilage samples were measured through qRT-PCR. After hADSCs were transfected or further induced for chondrogenesis, the chondrogenesis was visualized by Alcian blue staining, and the expressions of IRF1, HILPDA and chondrogenesis-related factors (SOX9, Aggrecan, COL2A1, MMP13, MMP3) were determined through qRT-PCR or Western blot. RESULTS HILPDA bound to IRF1 in hADSCs. IRF1 and HILPDA levels were up-regulated during the chondrogenesis of hADSCs. Overexpressions of IRF1 and HILPDA promoted the chondrogenesis of hADSCs with the up-regulation of SOX9, Aggrecan and COL2A1 and the down-regulation of MMP13 and MMP3; however, IRF1 silencing generated the opposite effects. Besides, HILPDA overexpression reversed the effects of IRF1 silencing on inhibiting chondrogenesis of hADSCs and regulating the expressions of chondrogenesis-related factors. CONCLUSION IRF1 promotes the chondrogenesis of hADSCs through up-regulating HILPDA level, providing novel biomarkers for treating osteoarthritis.
Collapse
Affiliation(s)
- Yujun Zhao
- Department of orthopedics, Jincheng People's Hospital, China.
| | - Xiaotie Wang
- Department of orthopedics, Jincheng People's Hospital, China
| | - Keke Nie
- Department of orthopedics, Jincheng People's Hospital, China
| |
Collapse
|
8
|
ÖZGENÇ Ö, ÖZEN A. Osteogenic Differentiation of Canine Adipose Derived Mesenchymal Stem Cells on B-TCP and B-TCP/Collagen Biomaterials. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.33988/auvfd.1130705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mesenchymal stem cells are adult stem cells that have the ability to differentiate into osteogenic, chondrogenic, adipogenic and myogenic lineages. In the field of orthopedics and traumatology, mesenchymal stem cells in combination with biomaterials are used especially for the treatment of bone fractures and diseases in both humans and animals. The purpose of this study is to promote growth, proliferation and osteogenic differentiation of mesenchymal stem cells that were isolated from the adipose tissue of canines on B-TCP (Beta-tricalcium phosphate) and B-TCP/Collagen biomaterials. MTT analysis was performed to test the cell adhesion and proliferation on B-TCP and B-TCP/Collagen biomaterials that were used to mimic the extracellular matrix of three-dimensional bone tissue. Scanning electron microscope analysis was performed to show general surface characters of B-TCP and B-TCP /Collagen biomaterials. The osteoinductive capacities of the B-TCP and B-TCP/Collagen biomaterials were determined by alkaline phosphatase and Von Kossa stainings, and RT-PCR analysis. The ALP activity of the B-TCP/Col containing material was significantly higher than the B-TCP on the first days. In terms of gene expression, there were no significant differences except 14th-day SPARC gene expression. The results of Von Kossa staining indicate that B-TCP/Col has above the desired level degradation capacity. As a result of this research, although it is advantageous in terms of alkaline phosphatase activity and osteogenic gene expression compared to B-TCP material, it is thought that B-TCP/Collagen biomaterial should be developed for use in bone tissue engineering due to its high degradation property.
Collapse
|
9
|
Santilli F, Fabrizi J, Pulcini F, Santacroce C, Sorice M, Delle Monache S, Mattei V. Gangliosides and Their Role in Multilineage Differentiation of Mesenchymal Stem Cells. Biomedicines 2022; 10:biomedicines10123112. [PMID: 36551867 PMCID: PMC9775755 DOI: 10.3390/biomedicines10123112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Gangliosides (GGs) are a glycolipid class present on Mesenchymal Stem Cells (MSCs) surfaces with a critical appearance role in stem cell differentiation, even though their mechanistic role in signaling and differentiation remains largely unknown. This review aims to carry out a critical analysis of the predictive role of gangliosides as specific markers of the cellular state of undifferentiated and differentiated MSCs, towards the osteogenic, chondrogenic, neurogenic, and adipogenic lineage. For this reason, we analyzed the role of GGs during multilineage differentiation processes of several types of MSCs such as Umbilical Cord-derived MSCs (UC-MSCs), Bone Marrow-derived MSCs (BM-MSCs), Dental Pulp derived MSCs (DPSCs), and Adipose derived MSCs (ADSCs). Moreover, we examined the possible role of GGs as specific cell surface markers to identify or isolate specific stem cell isotypes and their potential use as additional markers for quality control of cell-based therapies.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
- Correspondence: (S.D.M.); (V.M.)
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Correspondence: (S.D.M.); (V.M.)
| |
Collapse
|
10
|
Shahbodi M, Emami SA, Javadi B, Tayarani-Najaran Z. Effects of Thymoquinone on Adipocyte Differentiation in Human Adipose-Derived Stem Cells. Cell Biochem Biophys 2022; 80:771-779. [PMID: 36074244 DOI: 10.1007/s12013-022-01095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/28/2022] [Indexed: 11/03/2022]
Abstract
Inhibition of adipocyte differentiation would be a key strategy to control obesity. Human adipose tissue-derived stem cells (ADSCs) are a promising tool for adipocyte differentiation research. Thymoquinone (TQ) as a potent antioxidant molecule may inhibit adipocyte differentiation. Herein, we aim to investigate the inhibitory effect of TQ on lipid differentiation in ADSCs. Quantification of cell surface markers was used by Flow-Cytometry and the effect of TQ on cell viability was assessed using the AlamarBlue test. ADSCs were subjected to induction of differentiation in the presence of non-cytotoxic concentrations of TQ (6.25, 12.5 and 25 μg/mL). Lipid accumulation was assessed using the Oil-Red O staining technique. Moreover, the expression of PPARγ (Peroxisome proliferator-activated receptor-γ) and FAS (Fatty Acid Synthetase) proteins was evaluated using Western blotting. Flow-cytometry demonstrated the expression of CD44, CD90, and CD73 as mesenchymal stem cell markers on the cell surface. At concentrations ≤100 μg/mL of TQ, no significant difference in cell viability was observed compared to the control. Lipid accumulation in ADSCs significantly decreased at 25 μg/mL (P < 0.001) and 12.5 μg/mL (P < 0.01) of TQ. The findings of the qualitative examination of Lipid Droplets also confirmed these results. Western-blot showed that TQ at 12.5 (p < 0.05) and 25 μg/mL (p < 0.01) reduced FAS/β-actin ratio compared to the positive group. TQ also decreased the expression of PPARγ at 6.25 μg/mL but not at higher concentrations. In conclusion, TQ may reduce differentiation of fat stem cells into fat cells through inhibition of the expression of PPARγ and FAS proteins and might be a potential anti-obesity compound.
Collapse
Affiliation(s)
- Monireh Shahbodi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Azadi Square, Pardis University Campus, P.O. Box: 9188617871, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Azadi Square, Pardis University Campus, P.O. Box: 9188617871, Mashhad, Iran.
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Wang X, Zhao X, He Z. Mesenchymal stem cell carriers enhance anti-tumor efficacy of oncolytic virotherapy. Oncol Lett 2021; 21:238. [PMID: 33664802 PMCID: PMC7882891 DOI: 10.3892/ol.2021.12499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Oncolytic viruses (OVs) specifically infect, replicate and eventually destroy tumor cells, with no concomitant toxicity to adjacent normal cells. Furthermore, OVs can regulate tumor microenvironments and stimulate anti-tumor immune responses. Mesenchymal stem cells (MSCs) have inherent tumor tropisms and immunosuppressive functions. MSCs carrying OVs not only protect viruses from clearing by the immune system, but they also deliver the virus to tumor lesions. Equally, cytokines released by MSCs enhance anti-tumor immune responses, suggesting that MSCs carrying OVs may be considered as a promising strategy in enhancing the anti-tumor efficacies of virotherapy. In the present review, preclinical and clinical studies were evaluated and discussed, as well as the effectiveness of MSCs carrying OVs for tumor treatment.
Collapse
Affiliation(s)
- Xianyao Wang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Immunology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Xing Zhao
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Immunology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|