1
|
García P, Tabla R, Anany H, Bastias R, Brøndsted L, Casado S, Cifuentes P, Deaton J, Denes TG, Islam MA, Lavigne R, Moreno-Switt AI, Nakayama N, Muñoz Madero C, Sulakvelidze A, Svircev AM, Wagemans J, Biosca EG, Rivera D. ECOPHAGE: Combating Antimicrobial Resistance Using Bacteriophages for Eco-Sustainable Agriculture and Food Systems. Viruses 2023; 15:2224. [PMID: 38005900 PMCID: PMC10675804 DOI: 10.3390/v15112224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The focus of this meeting was to discuss the suitability of using bacteriophages as alternative antimicrobials in the agrifood sector. Following a One Health approach, the workshop explored the possibilities of implementing phage application strategies in the agriculture, animal husbandry, aquaculture, and food production sectors. Therefore, the meeting had gathered phage researchers, representatives of the agrifood industry, and policymakers to debate the advantages and potential shortcomings of using bacteriophages as alternatives to traditional antimicrobials and chemical pesticides. Industry delegates showed the latest objectives and demands from consumers. Representatives of regulatory agencies (European Medicines Agency (EMA) and Spanish Agency of Medicines and Health Products (AEMPS)) presented an update of new regulatory aspects that will impact and support the approval and implementation of phage application strategies across the different sectors.
Collapse
Affiliation(s)
- Pilar García
- Instituto de Productos Lácteos de Asturias—Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain;
| | - Rafael Tabla
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), 06071 Badajoz, Spain;
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
- Food Science Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Roberto Bastias
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile;
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Copenhagen, Denmark;
| | - Susana Casado
- Spanish Agency of Medicines and Health Products (AEMPS), 28022 Madrid, Spain;
| | | | - John Deaton
- ADM Science & Technology, Kennesaw, GA 30152, USA;
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
| | - Mohammad Aminul Islam
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA;
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium; (R.L.); (J.W.)
| | - Andrea I. Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820435, Chile;
| | - Natsuko Nakayama
- Japan Fisheries Research and Education Agency (FRA), Hiroshima 739-0452, Japan;
| | - Cristina Muñoz Madero
- Department of Medicines for Veterinary Use, Coordinator of the National Antibiotics Plan, Spanish Agency of Medicines and Health Products (AEMPS), 28022 Madrid, Spain;
| | | | | | - Jeroen Wagemans
- Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium; (R.L.); (J.W.)
| | - Elena G. Biosca
- Departamento de Microbiología y Ecología, Universitat de València (UV), 46100 Valencia, Spain
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8320000, Chile
| |
Collapse
|
2
|
Isolation, Characterization, and Genome Analysis of a Novel Bacteriophage, Escherichia Phage vB_EcoM-4HA13, Representing a New Phage Genus in the Novel Phage Family Chaseviridae. Viruses 2022; 14:v14112356. [PMID: 36366454 PMCID: PMC9699118 DOI: 10.3390/v14112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is one of the leading causes of foodborne illnesses in North America and can lead to severe symptoms, with increased fatality risk for young children. While E. coli O157:H7 remains the dominant STEC serotype associated with foodborne outbreaks, there has been an increasing number of non-O157 STEC outbreaks in recent years. For the food industry, lytic bacteriophages offer an organic, self-limiting alternative to pathogen reduction-one that could replace or reduce the use of chemical and physical food processing methods. From EHEC-enriched sewage, we isolated a novel bacteriophage, vB_EcoM-4HA13 (4HA13). Phenotypic characterizations revealed 4HA13 to possess a myoviral morphotype, with a high specificity to non-motile O111 serotype, and a long latent period (90 min). Through genomic analyses, this 52,401-bp dsDNA phage was found to contain 81 CDS, but no detectable presence of antibiotic resistance, integrase, or virulence genes. A BLASTn search for each of the identified 81 CDS yielded homologues with low levels of similarity. Comparison of RNA polymerase and terminase large subunit amino acid sequences led to the proposal and acceptance of a new bacteriophage family, Chaseviridae, with 4HA13 representing a new species and genus. The discovery of this phage has broadened our current knowledge of bacteriophage diversity.
Collapse
|