1
|
Wang Y, Tang Q, Pu L, Zhang H, Li X. CRISPR-Cas technology opens a new era for the creation of novel maize germplasms. FRONTIERS IN PLANT SCIENCE 2022; 13:1049803. [PMID: 36589095 PMCID: PMC9800880 DOI: 10.3389/fpls.2022.1049803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Maize (Zea mays) is one of the most important food crops in the world with the greatest global production, and contributes to satiating the demands for human food, animal feed, and biofuels. With population growth and deteriorating environment, efficient and innovative breeding strategies to develop maize varieties with high yield and stress resistance are urgently needed to augment global food security and sustainable agriculture. CRISPR-Cas-mediated genome-editing technology (clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated)) has emerged as an effective and powerful tool for plant science and crop improvement, and is likely to accelerate crop breeding in ways dissimilar to crossbreeding and transgenic technologies. In this review, we summarize the current applications and prospects of CRISPR-Cas technology in maize gene-function studies and the generation of new germplasm for increased yield, specialty corns, plant architecture, stress response, haploid induction, and male sterility. Optimization of gene editing and genetic transformation systems for maize is also briefly reviewed. Lastly, the challenges and new opportunities that arise with the use of the CRISPR-Cas technology for maize genetic improvement are discussed.
Collapse
Affiliation(s)
- Youhua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaoling Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhai Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Nuccio ML, Claeys H, Heyndrickx KS. CRISPR-Cas technology in corn: a new key to unlock genetic knowledge and create novel products. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:11. [PMID: 37309473 PMCID: PMC10236071 DOI: 10.1007/s11032-021-01200-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 06/14/2023]
Abstract
Since its inception in 2012, CRISPR-Cas technologies have taken the life science community by storm. Maize genetics research is no exception. Investigators around the world have adapted CRISPR tools to advance maize genetics research in many ways. The principle application has been targeted mutagenesis to confirm candidate genes identified using map-based methods. Researchers are also developing tools to more effectively apply CRISPR-Cas technologies to maize because successful application of CRISPR-Cas relies on target gene identification, guide RNA development, vector design and construction, CRISPR-Cas reagent delivery to maize tissues, and plant characterization, each contributing unique challenges to CRISPR-Cas efficacy. Recent advances continue to chip away at major barriers that prevent more widespread use of CRISPR-Cas technologies in maize, including germplasm-independent delivery of CRISPR-Cas reagents and production of high-resolution genomic data in relevant germplasm to facilitate CRISPR-Cas experimental design. This has led to the development of novel breeding tools to advance maize genetics and demonstrations of how CRISPR-Cas technologies might be used to enhance maize germplasm. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01200-9.
Collapse
|
3
|
Bhatta BP, Malla S. Improving Horticultural Crops via CRISPR/Cas9: Current Successes and Prospects. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1360. [PMID: 33066510 PMCID: PMC7602190 DOI: 10.3390/plants9101360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Horticultural crops include a diverse array of crops comprising fruits, vegetables, nuts, flowers, aromatic and medicinal plants. They provide nutritional, medicinal, and aesthetic benefits to mankind. However, these crops undergo many biotic (e.g., diseases, pests) and abiotic stresses (e.g., drought, salinity). Conventional breeding strategies to improve traits in crops involve the use of a series of backcrossing and selection for introgression of a beneficial trait into elite germplasm, which is time and resource consuming. Recent new plant breeding tools such as clustered regularly interspaced short palindromic repeats (CRISPR) /CRISPR-associated protein-9 (Cas9) technique have the potential to be rapid, cost-effective, and precise tools for crop improvement. In this review article, we explore the CRISPR/Cas9 technology, its history, classification, general applications, specific uses in horticultural crops, challenges, existing resources, associated regulatory aspects, and the way forward.
Collapse
Affiliation(s)
- Bed Prakash Bhatta
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801, USA
| | - Subas Malla
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801, USA
| |
Collapse
|
4
|
Komori T, Sun Y, Kashihara M, Uekawa N, Kato N, Usami S, Ishikawa N, Hiei Y, Kobayashi K, Kum R, Bortiri E, White K, Oeller P, Takemori N, Bate NJ, Komari T. High-throughput phenotypic screening of random genomic fragments in transgenic rice identified novel drought tolerance genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1291-1301. [PMID: 31980835 DOI: 10.1007/s00122-020-03548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Novel drought tolerance genes were identified by screening thousands of random genomic fragments from grass species in transgenic rice. Identification of agronomically important genes is a critical step for crop breeding through biotechnology. Multiple approaches have been employed to identify new gene targets, including comprehensive screening platforms for gene discovery such as the over-expression of libraries of cDNA clones. In this study, random genomic fragments from plants were introduced into rice and screened for drought tolerance in a high-throughput manner with the aim of finding novel genetic elements not exclusively limited to coding sequences. To illustrate the power of this approach, genomic libraries were constructed from four grass species, and screening a total of 50,825 transgenic rice lines for drought tolerance resulted in the identification of 12 reproducibly efficacious fragments. Of the twelve, two were from the mitochondrial genome of signal grass and ten were from the nuclear genome of buffalo grass. Subsequent sequencing and analyses revealed that the ten fragments from buffalo grass carried a similar genetic element with no significant homology to any previously characterized gene. The deduced protein sequence was rich in acidic amino acid residues in the C-terminal half, and two of the glutamic acid residues in the C-terminal half were shown to play an important role in drought tolerance. The results demonstrate that an open-ended screening approach using random genomic fragments could discover trait genes distinct from gene discovery based on known pathways or biased toward coding sequence over-expression.
Collapse
Affiliation(s)
- Toshiyuki Komori
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan.
| | - Yuejin Sun
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC, 27709, USA
| | - Masakazu Kashihara
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Natsuko Uekawa
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Norio Kato
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Satoru Usami
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Noriko Ishikawa
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Yukoh Hiei
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Kei Kobayashi
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Rise Kum
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Esteban Bortiri
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC, 27709, USA
| | - Kimberly White
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC, 27709, USA
| | - Paul Oeller
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC, 27709, USA
| | - Naoki Takemori
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| | - Nicholas J Bate
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC, 27709, USA
- Pairwise Plants, 110 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Toshihiko Komari
- Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka, 438-0802, Japan
| |
Collapse
|