1
|
Meintani DG, Chatzimitakos TG, Kasouni AI, Stalikas CD. Untargeted metabolomics of human keratinocytes reveals the impact of exposure to 2,6-dichloro-1,4-benzoquinone and 2,6-dichloro-3-hydroxy-1,4-benzoquinone as emerging disinfection by-products. Metabolomics 2022; 18:89. [PMID: 36342571 PMCID: PMC9640400 DOI: 10.1007/s11306-022-01935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The 2,6-dichloro-1,4-benzoquinone (DCBQ) and its derivative 2,6-dichloro-3-hydroxy-1,4-benzoquinone (DCBQ-OH) are disinfection by-products (DBPs) and emerging pollutants in the environment. They are considered to be of particular importance as they have a high potential of toxicity and they are likely to be carcinogenic. OBJECTIVES In this study, human epidermal keratinocyte cells (HaCaT) were exposed to the DCBQ and its derivative DCBQ-OH, at concentrations equivalent to their IC20 and IC50, and a study of the metabolic phenotype of cells was performed. METHODS The perturbations induced in cellular metabolites and their relative content were screened and evaluated through a metabolomic study, using 1H-NMR and MS spectroscopy. RESULTS Changes in the metabolic pathways of HaCaT at concentrations corresponding to IC20 and IC50 of DCBQ-OH involved the activation of cell membrane α-linolenic acid, biotin, and glutathione and deactivation of glycolysis/gluconeogenesis at IC50. The changes in metabolic pathways at IC20 and IC50 of DCBQ were associated with the activation of inositol phosphate, pertaining to the transfer of messages from the receptors of the membrane to the interior as well as with riboflavin. Deactivation of biotin metabolism was recorded, among others. The cells exposed to DCBQ exhibited a concentration-dependent decrease in saccharide concentrations. The concentration of steroids increased when cells were exposed to IC20 and decreased at IC50. Although both chemical factors stressed the cells, DCBQ led to the activation of transporting messages through phosphorylated derivatives of inositol. CONCLUSION Our findings provided insights into the impact of the two DBPs on human keratinocytes. Both chemical factors induced energy production perturbations, oxidative stress, and membrane damage.
Collapse
Affiliation(s)
- Dimitra G Meintani
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Theodoros G Chatzimitakos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Athanasia I Kasouni
- Laboratory of Biophysical Chemistry, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece
| | - Constantine D Stalikas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
2
|
Li C, Wu X, Zheng C, Xu S, Liu Y, Qin J, Fan X, Ye Y, Fei W. Nanotechnology-integrated ferroptosis inducers: a sharp sword against tumor drug resistance. J Mater Chem B 2022; 10:7671-7693. [PMID: 36043505 DOI: 10.1039/d2tb01350a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presently, the biggest hurdle to cancer therapy is the inevitable emergence of drug resistance. Since conventional therapeutic schedules fall short of the expectations in curbing drug resistance, the development of novel drug resistance management strategies is critical. Extensive research over the last decade has revealed that the process of ferroptosis is correlated with cancer resistance; moreover, it has been demonstrated that ferroptosis inducers reverse drug resistance. To elucidate the development and promote the clinical transformation of ferroptosis strategies in cancer therapy, we first analyzed the roles of key ferroptosis-regulating molecules in the progression of drug resistance in-depth and then reviewed the design of ferroptosis-inducing strategies based on nanotechnology for overcoming drug resistance, including glutathione depletion, reactive oxygen species generation, iron donation, lipid peroxidation aggregation, and multiple-drug resistance-associated tumor cell destruction. Finally, the prospects and challenges of regulating ferroptosis as a therapeutic strategy for reversing cancer therapy resistance were evaluated. This review aimed to provide a comprehensive understanding for researchers to develop ferroptosis-inducing nanoplatforms that can overcome drug resistance.
Collapse
Affiliation(s)
- Chaoqun Li
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Shanshan Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Jiale Qin
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaoyu Fan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
3
|
Suarez-Leston F, Calvelo M, Tolufashe GF, Muñoz A, Veleiro U, Porto C, Bastos M, Piñeiro Á, Garcia-Fandino R. SuPepMem: a database of innate immune system peptides and their cell membrane interactions. Comput Struct Biotechnol J 2022; 20:874-881. [PMID: 35222846 PMCID: PMC8844400 DOI: 10.1016/j.csbj.2022.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
Host defense peptides (HDPs) are short cationic peptides that play a key role in the innate immune response of all living organisms. Their action mechanism does not depend on the presence of protein receptors, but on their ability to target and disrupt the membranes of a wide range of pathogenic and pathologic cells which are recognized by their specific compositions, typically with a relatively high concentration of anionic lipids. Lipid profile singularities have been found in cancer, inflammation, bacteria, viral infections, and even in senescent cells, enabling the possibility to use them as therapeutic targets and/or diagnostic biomarkers. Molecular dynamics (MD) simulations are extraordinarily well suited to explore how HDPs interact with membrane models, providing a large amount of qualitative and quantitative information that, nowadays, cannot be assessed by wet-lab methods at the same level of temporal and spatial resolution. Here, we present SuPepMem, an open-access repository containing MD simulations of different natural and artificial peptides with potential membrane lysis activity, interacting with membrane models of healthy mammal, bacteria, viruses, cancer or senescent cells. In addition to a description of the HDPs and the target systems, SuPepMem provides both the input files necessary to run the simulations and also the results of some selected analyses, including structural and MD-based quantitative descriptors. These descriptors are expected to be useful to train machine learning algorithms that could contribute to design new therapeutic peptides. Tools for comparative analysis between different HDPs and model membranes, as well as to restrict the queries to structural and time-averaged properties are also available. SuPepMem is a living project, that will continuously grow with more simulations including peptides of different sequences, MD simulations with different number of peptide units, more membrane models and also several resolution levels. The database is open to MD simulations from other users (after quality check by the SuPepMem team). SuPepMem is freely available under https://supepmem.com/.
Collapse
Affiliation(s)
- Fabián Suarez-Leston
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Martin Calvelo
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain
- Departament de Química Inorgánica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Gideon F. Tolufashe
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Alicia Muñoz
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Uxía Veleiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - César Porto
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain
| | - Margarida Bastos
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
- Corresponding authors at: Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain (Á. Piñeiro) and Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain and CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre, 687, P-4169-007 Porto, Portugal (R. Garcia-Fandino).
| | - Rebeca Garcia-Fandino
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Corresponding authors at: Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain (Á. Piñeiro) and Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain and CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre, 687, P-4169-007 Porto, Portugal (R. Garcia-Fandino).
| |
Collapse
|
4
|
Kumar D, Nath K, Lal H, Gupta A. Noninvasive urine metabolomics of prostate cancer and its therapeutic approaches: a current scenario and future perspective. Expert Rev Proteomics 2021; 18:995-1008. [PMID: 34821179 DOI: 10.1080/14789450.2021.2011225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The sensitive, specific, fast, robust and noninvasive biomarkers for the evaluation of prostate cancer (PC) remain elusive in medical research. However, efforts are in full sway to investigate and resolve these puzzles for clinical practice. Advances in modern analytical techniques, sample processing, and the emergence of multiple omics approaches have created a great hope for the development of better detection modalities for PC. The objective of the present review is to provide a concise overview of the PC metabolomics-based potential discriminating molecules in urine samples using nuclear magnetic resonance spectroscopy and mass spectrometry. AREA COVERED A literature search was executed to find the studies reporting the noninvasive urine-based biomarkers for the diagnosis and prognosis of underlying disease. Most studies have extensivelyreported PC discriminating molecules with their respective controls. Additionally, pathophysiology and the treatment paradigm of PC are summarized and related to the insights underpinning the therapeutic intervention of PC. EXPERT OPINION With multi-centric, global, comprehensive omics approaches via either a non- or least-invasive bio-matrix may open new avenues of research for PC biomarker discovery, backed by a molecular mechanistic outline.
Collapse
Affiliation(s)
- Deepak Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Kavindra Nath
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hira Lal
- Department of Radiodiagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| |
Collapse
|
5
|
Yu J, Hu D, Cheng Y, Guo J, Wang Y, Tan Z, Peng J, Zhou H. Lipidomics and transcriptomics analyses of altered lipid species and pathways in oxaliplatin-treated colorectal cancer cells. J Pharm Biomed Anal 2021; 200:114077. [PMID: 33892396 DOI: 10.1016/j.jpba.2021.114077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/13/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022]
Abstract
Drug resistance and adverse reactions to oxaliplatin remain a considerable issue in clinical practice. Emerging evidence has suggested that alterations in the lipid metabolism during drug therapy affect cancer cells. To gain insight into the important process of lipid metabolism, we investigated the lipid and gene expression profile changes in HT29 cells treated with oxaliplatin. A total of 1403 lipid species from 16 lipid classes were identified by UHPLC-MS. Interestingly, phospholipids, including phosphatidylglycerol (PG), phosphatidic acid (PA), phosphatidylcholine (PC), and most of phosphatidylethanolamine (PE) with polyunsaturated fatty acid (PUFA) chains, were significantly higher due to oxaliplatin treatment, while triacylglycerols (TAGs) with a saturated fatty acid chain or monounsaturated fatty acid were significantly downregulated. Gene Set Enrichment Analysis (GSEA) based on RNA sequencing data suggested that neutral lipid metabolism was enriched in the control group, whereas the phospholipid metabolic process was enriched in the oxaliplatin-treated group. We observed that altered lipid metabolism enzyme genes were involved in the synthesis and lipolysis of TAGs and the Lands cycle pathway based on the network between the core lipid-related gene and lipid species, which was further verified by qRT-PCR. In summary, our findings revealed that oxaliplatin impressed a specific lipid profile signature and lipid transcriptional reprogramming in HT29 cells, which provides new insights into biomarker discovery and pathways for overcoming drug resistance and adverse reactions.
Collapse
Affiliation(s)
- Jing Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Dongli Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Yu Cheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jiwei Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Yicheng Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jingbo Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| |
Collapse
|
6
|
Lima AR, Pinto J, Amaro F, Bastos MDL, Carvalho M, Guedes de Pinho P. Advances and Perspectives in Prostate Cancer Biomarker Discovery in the Last 5 Years through Tissue and Urine Metabolomics. Metabolites 2021; 11:181. [PMID: 33808897 PMCID: PMC8003702 DOI: 10.3390/metabo11030181] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in men worldwide. For its screening, serum prostate specific antigen (PSA) test has been largely performed over the past decade, despite its lack of accuracy and inability to distinguish indolent from aggressive disease. Metabolomics has been widely applied in cancer biomarker discovery due to the well-known metabolic reprogramming characteristic of cancer cells. Most of the metabolomic studies have reported alterations in urine of PCa patients due its noninvasive collection, but the analysis of prostate tissue metabolome is an ideal approach to disclose specific modifications in PCa development. This review aims to summarize and discuss the most recent findings from tissue and urine metabolomic studies applied to PCa biomarker discovery. Eighteen metabolites were found consistently altered in PCa tissue among different studies, including alanine, arginine, uracil, glutamate, fumarate, and citrate. Urine metabolomic studies also showed consistency in the dysregulation of 15 metabolites and, interestingly, alterations in the levels of valine, taurine, leucine and citrate were found in common between urine and tissue studies. These findings unveil that the impact of PCa development in human metabolome may offer a promising strategy to find novel biomarkers for PCa diagnosis.
Collapse
Affiliation(s)
- Ana Rita Lima
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Joana Pinto
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Filipa Amaro
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Márcia Carvalho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Praça Nove de Abril, 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| |
Collapse
|
7
|
Wang Y. Applications of Lipidomics in Tumor Diagnosis and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:25-39. [PMID: 33740241 DOI: 10.1007/978-981-33-6785-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipids have many critical biological functions in cancer. There are characteristic changes of lipid metabolism and metabolites in different physiological and pathological processes. Lipidomics is an emerging discipline of metabolomics for systematic analysis of lipids in organisms, tissues, or cells and the molecules that interact with them. With the development of new analytical techniques, especially the application and development of mass spectrometry techniques, the determination of lipids can be carried out quickly and accurately and has a high throughput. A large number of studies have shown that abnormal lipid metabolism is closely related to the occurrence and development of tumors. The application of lipidomics technology can reveal changes in lipids and relative abnormal metabolic pathways associated with tumors. Moreover, it shows a wide range of application prospects in the identification of tumor lipid biomarkers, early tumor diagnosis, and the discovery of antitumor drug targets. This chapter mainly introduces the application and development direction of lipidomics in the diagnosis and therapy of different tumors.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China.
| |
Collapse
|
8
|
Osella S, Paloncýová M, Sahi M, Knippenberg S. Influence of Membrane Phase on the Optical Properties of DPH. Molecules 2020; 25:E4264. [PMID: 32957614 PMCID: PMC7570797 DOI: 10.3390/molecules25184264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022] Open
Abstract
The fluorescent molecule diphenylhexatriene (DPH) has been often used in combination with fluorescence anisotropy measurements, yet little is known regarding the non-linear optical properties. In the current work, we focus on them and extend the application to fluorescence, while paying attention to the conformational versatility of DPH when it is embedded in different membrane phases. Extensive hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the influence of the phase- and temperature-dependent lipid environment on the probe. Already, the transition dipole moments and one-photon absorption spectra obtained in the liquid ordered mixture of sphingomyelin (SM)-cholesterol (Chol) (2:1) differ largely from the ones calculated in the liquid disordered DOPC and solid gel DPPC membranes. Throughout the work, the molecular conformation in SM:Chol is found to differ from the other environments. The two-photon absorption spectra and the ones obtained by hyper-Rayleigh scattering depend strongly on the environment. Finally, a stringent comparison of the fluorescence anisotropy decay and the fluorescence lifetime confirm the use of DPH to gain information upon the surrounding lipids and lipid phases. DPH might thus open the possibility to detect and analyze different biological environments based on its absorption and emission properties.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Markéta Paloncýová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic;
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden;
| | - Maryam Sahi
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden;
| | - Stefan Knippenberg
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic;
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden;
- Theory Lab, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
9
|
Zhang W, Zhao H, Chen J, Zhong X, Zeng W, Zhang B, Qi K, Li Z, Zhou J, Shi L, He Z, Tang S. A LCMS-based untargeted lipidomics analysis of cleft palate in mouse. Mech Dev 2020; 162:103609. [PMID: 32407762 DOI: 10.1016/j.mod.2020.103609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Recent studies have shown that lipid metabolism was abnormal during the formation of cleft palate. However, the composition of these lipid species remains unclear. OBJECTIVE Aims of this study were to identify the lipid species components and reveal the key lipid metabolic disorders in cleft palate formation. METHODS The pregnant mice were divided into experimental group exposed to all-trans retinoic acid (RA-treated group) (n = 12) and control group (n = 12) at embryonic gestation day 10.5 (E0.5). The component of the palatal tissue metabolome was analyzed using a LCMS-based nontargeted lipidomics approach. Multivariate statistical analysis was then carried out to assess the differences between the RA-treated group and the control group. RESULTS Twenty-nine lipid species were found to discriminate between RA-treated and control embryos. Among them, 28 lipid species increased and 1 lipid species decreased in the RA-treated group. Among these lipids, 13 were triglycerides, 9 were PEs, 3 were PCs, 2 were PSs, 2 were DGs. Further analysis of the number of carbons and unsaturated bond of triglycerides showed that TGs with high unsaturated bonds constituted a higher fraction in the RA-treated group. A higher amount of triglycerides containing 52, 54, 56, 58, 60 carbons, and 1 to 8 unsaturated bonds. Of note, under RA treatment, TG 50:1, 52:2, 56:6and 60:8 became the most prominent. CONCLUSION Lipid metabolism is significantly different in the formation of cleft palate induced by RA, and the unsaturated triglycerides increased in the RA-treated group may play an important role in the formation of cleft palate.
Collapse
Affiliation(s)
- Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Hanxing Zhao
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiasheng Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoping Zhong
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Weiping Zeng
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Bingna Zhang
- Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Kai Qi
- Shanghai Applied Protein Technology Co., Ltd, Shanghai, China
| | - Zhonglei Li
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital, Changsha, Hunan, China
| | - Lungang Shi
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhihao He
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
10
|
Silva CL, Perestrelo R, Sousa-Ferreira I, Capelinha F, Câmara JS, Petković M. Lipid biosignature of breast cancer tissues by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Breast Cancer Res Treat 2020; 182:9-19. [DOI: 10.1007/s10549-020-05672-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022]
|
11
|
Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG, Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat 2020; 49:100670. [DOI: 10.1016/j.drup.2019.100670] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/13/2022]
|