1
|
Nasfi S, Shahbazi S, Bitterlich K, Šečić E, Kogel KH, Steinbrenner J. A pipeline for validation of Serendipita indica effector-like sRNA suggests cross-kingdom communication in the symbiosis with Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1811-1829. [PMID: 39721982 PMCID: PMC11981902 DOI: 10.1093/jxb/erae515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Bidirectional communication between pathogenic microbes and their plant hosts via small RNA (sRNA)-mediated cross-kingdom RNAi (ckRNAi) is a key element for successful host colonization. Whether mutualistic fungi of the Serendipitaceae family, known for their extremely broad host range, use sRNAs to colonize plant roots is still under debate. To address this question, we developed a pipeline to validate the accumulation, translocation, and activity of fungal sRNAs in post-transcriptional silencing of Arabidopsis thaliana genes. Using stem-loop quantitative reverse transcription-PCR, we detected the expression of a specific set of Serendipita indica (Si) sRNAs, targeting host genes involved in cell wall organization, hormonal signalling regulation, immunity, and gene regulation. To confirm the gene silencing activity of these sRNAs in plant cells, SisRNAs were transiently expressed in protoplasts. Stem-loop PCR confirmed sRNA expression and accumulation, while qPCR validated post-transcriptional gene silencing of their predicted target genes. Furthermore, Arabidopsis ARGONAUTE 1 immunoprecipitation revealed the loading of fungal SisRNAs into the plant RNAi machinery, suggesting the translocation of SisRNA from the fungus into root cells. In conclusion, this study provides a blueprint for rapid selection and analysis of sRNA effectors and further supports the model of cross-kingdom communication in the Sebacinoid symbiosis.
Collapse
Affiliation(s)
- Sabrine Nasfi
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Saba Shahbazi
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Katharina Bitterlich
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Ena Šečić
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Jens Steinbrenner
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| |
Collapse
|
2
|
Erokhina TN, Ryabukhina EV, Lyapina IS, Ryazantsev DY, Zavriev SK, Morozov SY. Promising Biotechnological Applications of the Artificial Derivatives Designed and Constructed from Plant microRNA Genes. PLANTS (BASEL, SWITZERLAND) 2025; 14:325. [PMID: 39942887 PMCID: PMC11819897 DOI: 10.3390/plants14030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that are expressed in a tissue-specific manner during the development of plants and animals. The genes of miRNAs have been found to produce the following two products: (i) primary transcripts of these genes (pri-miRNA) are processed to give rise to mature miRNA, and (ii) in some cases, the pri-miRNA molecules can be translated to form small peptides, named as miPEPs. Gene silencing by artificial microRNAs (amiRNAs) is one of the potential crucial methods for the regulation of desired genes to improve horticultural plants. Likewise, external application of chemically synthesized miPEPs may help plants to resist biotic/abiotic stresses and grow faster. These potent and reliable derivatives of miRNA genes can be applied for improving useful traits in crop plants. This review summarizes the progress in research on the artificial gene derivatives involved in regulating plant development, virus and pest diseases, and abiotic stress resistance pathways. We also briefly discuss the molecular mechanisms of relevant target genes for future research on breeding in plants. In general, this review may be useful to researchers who are implementing amiRNA and miPEP for accelerating breeding programs and developmental studies in crop plants.
Collapse
Affiliation(s)
- T. N. Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (T.N.E.); (E.V.R.); (I.S.L.); (D.Y.R.); (S.K.Z.)
| | - Ekaterina V. Ryabukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (T.N.E.); (E.V.R.); (I.S.L.); (D.Y.R.); (S.K.Z.)
| | - Irina S. Lyapina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (T.N.E.); (E.V.R.); (I.S.L.); (D.Y.R.); (S.K.Z.)
| | - Dmitry Y. Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (T.N.E.); (E.V.R.); (I.S.L.); (D.Y.R.); (S.K.Z.)
| | - Sergey K. Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (T.N.E.); (E.V.R.); (I.S.L.); (D.Y.R.); (S.K.Z.)
| | - Sergey Y. Morozov
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Rabuma T, Sanan-Mishra N. Artificial miRNAs and target-mimics as potential tools for crop improvement. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:67-91. [PMID: 39901962 PMCID: PMC11787108 DOI: 10.1007/s12298-025-01550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025]
Abstract
MicroRNAs (miRNAs) are endogenous, small molecules that negatively regulate gene expression to control the normal development and stress response in plants. They mediate epigenetic changes and regulate gene expression at both transcriptional and post-transcriptional levels. Synthetic biology approaches have been utilized to design efficient artificial miRNAs (amiRNAs) or target-mimics to regulate specific gene expression for understanding the biological function of genes and crop improvement. The amiRNA based gene silencing is an effective technique to "turn off" gene expression, while miRNA target-mimics or decoys are used for efficiently down regulating miRNAs and "turn on" gene expression. In this context, the development of endogenous target-mimics (eTMs) and short tandem target mimics (STTMs) represent promising biotechnological tools for enhancing crop traits like stress tolerance and disease resistance. Through this review, we present the recent developments in understanding plant miRNA biogenesis, which is utilized for the efficient design and development of amiRNAs. This is important to incorporate the artificially synthesized miRNAs as internal components and utilizing miRNA biogenesis pathways for the programming of synthetic circuits to improve crop tolerance to various abiotic and biotic stress factors. The review also examines the recent developments in the use of miRNA target-mimics or decoys for efficiently down regulating miRNAs for trait improvement. A perspective analysis and challenges on the use of amiRNAs and STTM as potent tools to engineer useful traits in plants have also been presented.
Collapse
Affiliation(s)
- Tilahun Rabuma
- Department of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
4
|
Zhao X, Gao Q, Wang H, Yue J, An D, Li B, Yan F, Carmen SM, Zhao Y, Zhou H, Zhao M. syn-tasiRnas targeting the coat protein of potato virus Y confer antiviral resistance in Nicotiana benthamiana. PLANT SIGNALING & BEHAVIOR 2024; 19:2358270. [PMID: 38796845 PMCID: PMC11135832 DOI: 10.1080/15592324.2024.2358270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Trans-acting small interfering RNAs (tasiRNAs) are 21-nt phased (phased siRNAs) resulting from successive DCL-catalyzed processing from the end of a double-stranded RNA substrate originating from the RDR of an AGO-catalyzed cleaved RNA at a micro RNA target site. Plant tasiRNAs have been synthesized to produce synthetic tasiRNAs (syn-tasiRNAs) targeting viral RNAs that confer viral resistance. In this study, we engineered syn-tasiRNAs to target potato virus Y (PVY) infection by replacing five native siRNAs of TAS1c with 210-bp fragments from the coat protein (CP) region of the PVY genome. The results showed that the transient expression of syn-tasiR-CPpvy2 in Nicotiana benthamiana (N. benthamiana) plants conferred antiviral resistance, supported by the absence of PVY infection symptoms and viral accumulation. This indicated that syn-tasiR-CPpvy2 successfully targeted and silenced the PVY CP gene, effectively inhibiting viral infection. syn-tasiR-CPpvy1 displayed attenuated symptoms and decreased viral accumulation in these plants However, severe symptoms of PVY infection and a similar amount of viral accumulation as the control were observed in plants expressing syn-tasiR-CPpvy3. syn-tasiR-CPpvy/pvx, which targets both PVY and potato virus X (PVX), was engineered using a single precursor. After the transient expression of syn-tasiR-CPpvy/pvx3 and syn-tasiR-CPpvy/pvx5 in N. benthamiana, the plants were resistant to both PVY and PVX. These results suggested that engineered syn-tasiRNAs could not only specifically induce antiviral resistance against one target virus but could also be designed for multi-targeted silencing of different viruses, thereby preventing complex virus infection in plants.
Collapse
Affiliation(s)
- Xingyue Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Qian Gao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Haijuan Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Jianying Yue
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Derong An
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Bin Li
- Department of Tabacco Production, Sichuan Province Company of Tobacco Corporation in China, Chengdu, China
| | - Fangfang Yan
- Panzhihua City company of Sichuan province company of Tobacco Corporation in China, Panzhihua city, Sichuan provience, China
| | | | - Yuanzheng Zhao
- Department of Plant Protection, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
- Department of Plant protection, Key Laboratory of the Development and Resource Utilization of Biological Pesticide in Inner Mongolia, Hohhot, China
| |
Collapse
|
5
|
Gayubas B, Castillo MC, León J. Arabidopsis VQ motif-containing proteins VQ1 and VQ10 interact with plastidial 1-deoxy-D-xylulose-5-phosphate synthase. Sci Rep 2024; 14:18930. [PMID: 39147804 PMCID: PMC11666741 DOI: 10.1038/s41598-024-70061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
VQ1 and VQ10 are largely unstructured homologous proteins with a significant potential for protein-protein interactions. Yeast two-hybrid (Y2H) analysis confirmed that both proteins interact not only with themselves and each other but also with other VQ and WRKY proteins. Screening an Arabidopsis Y2H library with VQ1 as bait identified 287 interacting proteins. Validation of the screening confirmed that interactions with VQ1 also occurred with VQ10, supporting their functional homology. Although VQ1 or VQ10 proteins do not localize in plastids, 47 VQ1-targets were found to be plastidial proteins. In planta interaction with the isoprenoid biosynthetic enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS) was confirmed by co-immunoprecipitation. DXS oligomerizes through redox-regulated intermolecular disulfide bond formation, and the interaction with VQ1 or VQ10 do not involve their unique C residues. The VQ-DXS protein interaction did not alter plastid DXS localization or its oligomerization state. Although plants with enhanced or reduced VQ1 and VQ10 expression did not exhibit significantly altered levels of isoprenoids compared to wild-type plants, they did display significantly improved or diminished photosynthesis efficiency, respectively.
Collapse
Affiliation(s)
- Beatriz Gayubas
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), 46022, Valencia, Spain
| | - Mari-Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), 46022, Valencia, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), 46022, Valencia, Spain.
| |
Collapse
|
6
|
Cisneros AE, Martín-García T, Primc A, Kuziuta W, Sánchez-Vicente J, Aragonés V, Daròs JA, Carbonell A. Transgene-free, virus-based gene silencing in plants by artificial microRNAs derived from minimal precursors. Nucleic Acids Res 2023; 51:10719-10736. [PMID: 37713607 PMCID: PMC10602918 DOI: 10.1093/nar/gkad747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
Artificial microRNAs (amiRNAs) are highly specific, 21-nucleotide (nt) small RNAs designed to silence target transcripts. In plants, their application as biotechnological tools for functional genomics or crop improvement is limited by the need of transgenically expressing long primary miRNA (pri-miRNA) precursors to produce the amiRNAs in vivo. Here, we analyzed the minimal structural and sequence requirements for producing effective amiRNAs from the widely used, 521-nt long AtMIR390a pri-miRNA from Arabidopsis thaliana. We functionally screened in Nicotiana benthamiana a large collection of constructs transiently expressing amiRNAs against endogenous genes and from artificially shortened MIR390-based precursors and concluded that highly effective and accurately processed amiRNAs can be produced from a chimeric precursor of only 89 nt. This minimal precursor was further validated in A. thaliana transgenic plants expressing amiRNAs against endogenous genes. Remarkably, minimal but not full-length precursors produce authentic amiRNAs and induce widespread gene silencing in N. benthamiana when expressed from an RNA virus, which can be applied into leaves by spraying infectious crude extracts. Our results reveal that the length of amiRNA precursors can be shortened without affecting silencing efficacy, and that viral vectors including minimal amiRNA precursors can be applied in a transgene-free manner to induce whole-plant gene silencing.
Collapse
Affiliation(s)
- Adriana E Cisneros
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Tamara Martín-García
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Anamarija Primc
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Wojtek Kuziuta
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Javier Sánchez-Vicente
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Av. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
7
|
Gouthu S, Mandelli C, Eubanks BA, Deluc LG. Transgene-free genome editing and RNAi ectopic application in fruit trees: Potential and limitations. FRONTIERS IN PLANT SCIENCE 2022; 13:979742. [PMID: 36325537 PMCID: PMC9621297 DOI: 10.3389/fpls.2022.979742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
For the past fifteen years, significant research advances in sequencing technology have led to a substantial increase in fruit tree genomic resources and databases with a massive number of OMICS datasets (transcriptomic, proteomics, metabolomics), helping to find associations between gene(s) and performance traits. Meanwhile, new technology tools have emerged for gain- and loss-of-function studies, specifically in gene silencing and developing tractable plant models for genetic transformation. Additionally, innovative and adapted transformation protocols have optimized genetic engineering in most fruit trees. The recent explosion of new gene-editing tools allows for broadening opportunities for functional studies in fruit trees. Yet, the fruit tree research community has not fully embraced these new technologies to provide large-scale genome characterizations as in cereals and other staple food crops. Instead, recent research efforts in the fruit trees appear to focus on two primary translational tools: transgene-free gene editing via Ribonucleoprotein (RNP) delivery and the ectopic application of RNA-based products in the field for crop protection. The inherent nature of the propagation system and the long juvenile phase of most fruit trees are significant justifications for the first technology. The second approach might have the public favor regarding sustainability and an eco-friendlier environment for a crop production system that could potentially replace the use of chemicals. Regardless of their potential, both technologies still depend on the foundational knowledge of gene-to-trait relationships generated from basic genetic studies. Therefore, we will discuss the status of gene silencing and DNA-based gene editing techniques for functional studies in fruit trees followed by the potential and limitations of their translational tools (RNP delivery and RNA-based products) in the context of crop production.
Collapse
Affiliation(s)
- Satyanarayana Gouthu
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Christian Mandelli
- Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| | - Britt A. Eubanks
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Laurent G. Deluc
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
- Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
8
|
Marquez‐Molins J, Hernandez‐Azurdia AG, Urrutia‐Perez M, Pallas V, Gomez G. A circular RNA vector for targeted plant gene silencing based on an asymptomatic viroid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:284-293. [PMID: 35916236 PMCID: PMC9804161 DOI: 10.1111/tpj.15929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Gene silencing for functional studies in plants has been largely facilitated by manipulating viral genomes with inserts from host genes to trigger virus-induced gene silencing (VIGS) against the corresponding mRNAs. However, viral genomes encode multiple proteins and can disrupt plant homeostasis by interfering with endogenous cell mechanisms. To try to circumvent this functional limitation, we have developed a silencing method based on the minimal autonomously-infectious nucleic acids currently known: viroids, which lack proven coding capability. The genome of Eggplant latent viroid, an asymptomatic viroid, was manipulated with insertions ranging between 21 and 42 nucleotides. Our results show that, although larger insertions might be tolerated, the maintenance of the secondary structure appears to be critical for viroid genome stability. Remarkably, these modified ELVd molecules are able to induce systemic infection promoting the silencing of target genes in eggplant. Inspired by the design of artificial microRNAs, we have developed a simple and standardized procedure to generate stable insertions into the ELVd genome capable of silencing a specific target gene. Analogously to VIGS, we have termed our approach viroid-induced gene silencing, and demonstrate that it is a promising tool for dissecting gene functions in eggplant.
Collapse
Affiliation(s)
- Joan Marquez‐Molins
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat Politècnica de ValènciaCPI 8E, Av. de los Naranjos s/n46022ValenciaSpain
| | - Andrea Gabriela Hernandez‐Azurdia
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
| | - María Urrutia‐Perez
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat Politècnica de ValènciaCPI 8E, Av. de los Naranjos s/n46022ValenciaSpain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
| |
Collapse
|
9
|
Carbonell A. RNAi tools for controlling viroid diseases. Virus Res 2022; 313:198729. [DOI: 10.1016/j.virusres.2022.198729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/01/2022]
|
10
|
López-Dolz L, Spada M, Daròs JA, Carbonell A. Fine-Tuning Plant Gene Expression with Synthetic Trans-Acting Small Interfering RNAs. Methods Mol Biol 2022; 2408:227-242. [PMID: 35325426 DOI: 10.1007/978-1-0716-1875-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
RNAi-based tools are widely used in gene function studies and for crop improvement. However, no effective methods for precisely controlling the degree of induced silencing have been reported until recently. Here we report a detailed protocol for designing and generating synthetic trans-acting small interfering RNA (syn-tasiRNA) constructs for fine-tuning gene expression in plants. Recently developed high-throughput AtTAS1c-D2-B/c-based vectors are used to clone and express syn-tasiRNAs that possess different efficacies depending on their precursor location and on their degree of base-pairing with the 5' end of target RNAs.
Collapse
Affiliation(s)
- Lucio López-Dolz
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - Maria Spada
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain.
| |
Collapse
|
11
|
Cao X, Zhao R, Wang H, Zhang H, Zhao X, Khan LU, Huang X. Genomic diversity of Areca Palm Velarivirus 1 (APV1) in Areca palm (Areca catechu) plantations in Hainan, China. BMC Genomics 2021; 22:725. [PMID: 34620080 PMCID: PMC8499421 DOI: 10.1186/s12864-021-07976-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Background Areca palm (Areca catechu L.) is an important commercial crop in southeast Asia, but its cultivation is threatened by yellowing leaf disease (YLD). Areca palm velarivirus 1 (APV1) was recently associated with YLD, but little is known regarding its population and genetic diversity. To assess the diversity of YLD, the APV1 genome was sequenced in YLD samples collected from different sites in Hainan. Results Twenty new and complete APV1 genomes were identified. The APV1 isolates had highly conserved sequences in seven open reading frames (ORFs; > 95% nucleotide [nt] identity) at the 3′ terminal, but there was diversity (81–87% nt identity) in three ORFs at the 5′ terminal. Phylogenetic analysis divided the APV1 isolates into three phylogroups, with 16 isolates (> 70%) in phylogroup A. Mixed infections with different genotypes in the same tree were identified; this was closely correlated with higher levels of genetic recombination. Conclusions Phylogroup A is the most prevalent APV1 genotype in areca palm plantations in Hainan, China. Mixed infection with different genotypes can lead to genomic recombination of APV1. Our data provide a foundation for accurate diagnostics, characterization of etiology, and elucidation of the evolutionary relationships of APV1 populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07976-6.
Collapse
Affiliation(s)
- Xianmei Cao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Ruibai Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Hongxing Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Huaiwen Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Xue Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Latif Ullah Khan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Xi Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, People's Republic of China.
| |
Collapse
|
12
|
|
13
|
Wójcik AM. Research Tools for the Functional Genomics of Plant miRNAs During Zygotic and Somatic Embryogenesis. Int J Mol Sci 2020; 21:E4969. [PMID: 32674459 PMCID: PMC7420248 DOI: 10.3390/ijms21144969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
During early plant embryogenesis, some of the most fundamental decisions on fate and identity are taken making it a fascinating process to study. It is no surprise that higher plant embryogenesis was intensively analysed during the last century, while somatic embryogenesis is probably the most studied regeneration model. Encoded by the MIRNA, short, single-stranded, non-coding miRNAs, are commonly present in all Eukaryotic genomes and are involved in the regulation of the gene expression during the essential developmental processes such as plant morphogenesis, hormone signaling, and developmental phase transition. During the last few years dedicated to miRNAs, analytical methods and tools have been developed, which have afforded new opportunities in functional analyses of plant miRNAs, including (i) databases for in silico analysis; (ii) miRNAs detection and expression approaches; (iii) reporter and sensor lines for a spatio-temporal analysis of the miRNA-target interactions; (iv) in situ hybridisation protocols; (v) artificial miRNAs; (vi) MIM and STTM lines to inhibit miRNA activity, and (vii) the target genes resistant to miRNA. Here, we attempted to summarise the toolbox for functional analysis of miRNAs during plant embryogenesis. In addition to characterising the described tools/methods, examples of the applications have been presented.
Collapse
Affiliation(s)
- Anna Maria Wójcik
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
14
|
Carbonell A, Lisón P, Daròs J. Multi-targeting of viral RNAs with synthetic trans-acting small interfering RNAs enhances plant antiviral resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:720-737. [PMID: 31350772 PMCID: PMC6899541 DOI: 10.1111/tpj.14466] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 05/15/2023]
Abstract
RNA interference (RNAi)-based tools are used in multiple organisms to induce antiviral resistance through the sequence-specific degradation of target RNAs by complementary small RNAs. In plants, highly specific antiviral RNAi-based tools include artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs). syn-tasiRNAs have emerged as a promising antiviral tool allowing for the multi-targeting of viral RNAs through the simultaneous expression of several syn-tasiRNAs from a single precursor. Here, we compared in tomato plants the effects of an amiRNA construct expressing a single amiRNA and a syn-tasiRNA construct expressing four different syn-tasiRNAs against Tomato spotted wilt virus (TSWV), an economically important pathogen affecting tomato crops worldwide. Most of the syn-tasiRNA lines were resistant to TSWV, whereas the majority of the amiRNA lines were susceptible and accumulated viral progenies with mutations in the amiRNA target site. Only the two amiRNA lines with higher amiRNA accumulation were resistant, whereas resistance in syn-tasiRNA lines was not exclusive of lines with high syn-tasiRNA accumulation. Collectively, these results suggest that syn-tasiRNAs induce enhanced antiviral resistance because of the combined silencing effect of each individual syn-tasiRNA, which minimizes the possibility that the virus simultaneously mutates all different target sites to fully escape each syn-tasiRNA.
Collapse
Affiliation(s)
- Alberto Carbonell
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas‐Universitat Politècnica de València46022ValenciaSpain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas‐Universitat Politècnica de València46022ValenciaSpain
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas‐Universitat Politècnica de València46022ValenciaSpain
| |
Collapse
|
15
|
Catch Me If You Can! RNA Silencing-Based Improvement of Antiviral Plant Immunity. Viruses 2019; 11:v11070673. [PMID: 31340474 PMCID: PMC6669615 DOI: 10.3390/v11070673] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022] Open
Abstract
Viruses are obligate parasites which cause a range of severe plant diseases that affect farm productivity around the world, resulting in immense annual losses of yield. Therefore, control of viral pathogens continues to be an agronomic and scientific challenge requiring innovative and ground-breaking strategies to meet the demands of a growing world population. Over the last decade, RNA silencing has been employed to develop plants with an improved resistance to biotic stresses based on their function to provide protection from invasion by foreign nucleic acids, such as viruses. This natural phenomenon can be exploited to control agronomically relevant plant diseases. Recent evidence argues that this biotechnological method, called host-induced gene silencing, is effective against sucking insects, nematodes, and pathogenic fungi, as well as bacteria and viruses on their plant hosts. Here, we review recent studies which reveal the enormous potential that RNA-silencing strategies hold for providing an environmentally friendly mechanism to protect crop plants from viral diseases.
Collapse
|
16
|
Carbonell A. Secondary Small Interfering RNA-Based Silencing Tools in Plants: An Update. FRONTIERS IN PLANT SCIENCE 2019; 10:687. [PMID: 31191587 PMCID: PMC6547011 DOI: 10.3389/fpls.2019.00687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/07/2019] [Indexed: 05/16/2023]
|