1
|
Chung YM, Hu CS, Sun E, Tseng HC. Morphological multiparameter filtration and persistent homology in mitochondrial image analysis. PLoS One 2024; 19:e0310157. [PMID: 39302926 DOI: 10.1371/journal.pone.0310157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 08/25/2024] [Indexed: 09/22/2024] Open
Abstract
The complexity of branching and curvilinear morphology of a complete mitochondrial network within each cell is challenging to analyze and quantify. To address this challenge, we developed an image analysis technique using persistent homology with a multiparameter filtration framework, combining image processing techniques in mathematical morphology. We show that such filtrations contain both topological and geometric information about complex cellular organelle structures, which allows a software program to extract meaningful features. Using this information, we also develop a connectivity index that describes the morphology of the branching patterns. As proof of concept, we utilize this approach to study how mitochondrial networks are altered by genetic changes in the Optineurin gene. Mutations in the autophagy gene Optineurin (OPTN) are associated with primary open-angle glaucoma (POAG), amyotrophic lateral sclerosis (ALS), and Paget's disease of the bone, but the pathophysiological mechanism is unclear. We utilized the proposed mathematical morphology-based multiparameter filtration and persistent homology approach to analyze and quantitatively compare how changes in the OPTN gene alter mitochondrial structures from their normal interconnected, tubular morphology into scattered, fragmented pieces.
Collapse
Affiliation(s)
- Yu-Min Chung
- Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Chuan-Shen Hu
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Emily Sun
- Columbia Ophthalmology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Henry C Tseng
- Duke Eye Center, Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
2
|
Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q, Cao Y, Wang Y, Jia A, Bi Y, Liu G. Regulations of Glycolytic Activities on Macrophages Functions in Tumor and Infectious Inflammation. Front Cell Infect Microbiol 2020; 10:287. [PMID: 32596169 PMCID: PMC7303283 DOI: 10.3389/fcimb.2020.00287] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
Macrophages differentiated into a classically activated (M1) or alternatively activated phenotype (M2) in infection and tumor, but the precise effects of glycolysis and oxidative phosphorylation (OXPHOS) metabolic pathway remain unclear. Herein, the effects of glycolysis or OXPHOS on macrophage polarizations were investigated using a pharmacological approach in mice. 2-Deoxy-D-glucose (2-DG) treatments, which blocks the key enzyme hexokinase of glycolysis, efficiently inhibits a specific switch to M1 lineage, decreasing the secretion of pro-inflammatory cytokines and expressions of co-stimulatory molecules associated with relieving infectious inflammation in vitro and in vivo. Glycolytic activation through the hypoxia-inducible factor-1α (HIF-1α) pathway was required for differentiation to the M1 phenotype, which conferred protection against infection. Dimethyl malonate (DMM) treatment, which blocks the key element succinate of OXPHOS, efficiently inhibits a specific switch to M2 lineage when macrophages receiving M2 stimulation, decreasing the secretion of anti-inflammatory cytokine and CD206 expressions. Mitochondrial dynamic alterations including mitochondrial mass, mitochondrial membrane potential (Dym) and ROS productions were critically for differentiation to the M2 phenotype, which conferred protection against anti-tumor immunity. Glycolysis is also required for macrophage M2 differentiation. Thus, these data provide a basis for a comprehensively understanding the role of glycolysis and OXPHOS in macrophage differentiation during anti-infection and anti-tumor inflammation.
Collapse
Affiliation(s)
- Qing Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ruichen Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|