1
|
Lohrasbi F, Ghasemi-Kasman M, Soghli N, Ghazvini S, Vaziri Z, Abdi S, Darban YM. The Journey of iPSC-derived OPCs in Demyelinating Disorders: From In vitro Generation to In vivo Transplantation. Curr Neuropharmacol 2023; 21:1980-1991. [PMID: 36825702 PMCID: PMC10514531 DOI: 10.2174/1570159x21666230220150010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 02/22/2023] Open
Abstract
Loss of myelination is common among neurological diseases. It causes significant disability, even death, if it is not treated instantly. Different mechanisms involve the pathophysiology of demyelinating diseases, such as genetic background, infectious, and autoimmune inflammation. Recently, regenerative medicine and stem cell therapy have shown to be promising for the treatment of demyelinating disorders. Stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cells (ASCs), can differentiate into oligodendrocyte progenitor cells (OPCs), which may convert to oligodendrocytes (OLs) and recover myelination. IPSCs provide an endless source for OPCs generation. However, the restricted capacity of proliferation, differentiation, migration, and myelination of iPSC-derived OPCs is a notable gap for future studies. In this article, we have first reviewed stem cell therapy in demyelinating diseases. Secondly, methods of different protocols have been discussed among in vitro and in vivo studies on iPSC-derived OPCs to contrast OPCs' transplantation efficacy. Lastly, we have reviewed the results of iPSCs-derived OLs production in each demyelination model.
Collapse
Affiliation(s)
- Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
- Department of Physiology, School of Medical Sciences, Babol University of Medical Science, Babol, Iran
| | - Negar Soghli
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Sobhan Ghazvini
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Zahra Vaziri
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Sadaf Abdi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | | |
Collapse
|
2
|
James OG, Selvaraj BT, Magnani D, Burr K, Connick P, Barton SK, Vasistha NA, Hampton DW, Story D, Smigiel R, Ploski R, Brophy PJ, Ffrench-Constant C, Lyons DA, Chandran S. iPSC-derived myelinoids to study myelin biology of humans. Dev Cell 2021; 56:1346-1358.e6. [PMID: 33945785 PMCID: PMC8098746 DOI: 10.1016/j.devcel.2021.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023]
Abstract
Myelination is essential for central nervous system (CNS) formation, health, and function. Emerging evidence of oligodendrocyte heterogeneity in health and disease and divergent CNS gene expression profiles between mice and humans supports the development of experimentally tractable human myelination systems. Here, we developed human iPSC-derived myelinating organoids ("myelinoids") and quantitative tools to study myelination from oligodendrogenesis through to compact myelin formation and myelinated axon organization. Using patient-derived cells, we modeled a monogenetic disease of myelinated axons (Nfasc155 deficiency), recapitulating impaired paranodal axo-glial junction formation. We also validated the use of myelinoids for pharmacological assessment of myelination-both at the level of individual oligodendrocytes and globally across whole myelinoids-and demonstrated reduced myelination in response to suppressed synaptic vesicle release. Our study provides a platform to investigate human myelin development, disease, and adaptive myelination.
Collapse
Affiliation(s)
- Owen G James
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh, Edinburgh EH16 4SB, UK; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Dario Magnani
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Karen Burr
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Peter Connick
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Samantha K Barton
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh, Edinburgh EH16 4SB, UK; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Navneet A Vasistha
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh, Edinburgh EH16 4SB, UK; Biotech Research and Innovation Centre, Copenhagen N 2200, Denmark
| | - David W Hampton
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh, Edinburgh EH16 4SB, UK
| | - David Story
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Robert Smigiel
- Department of Pediatrics and Rare Disorders, Wroclaw Medical University, Wrocław 51-618, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw 02-106, Poland
| | - Peter J Brophy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | | | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh, Edinburgh EH16 4SB, UK; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK; Centre for Brain Development and Repair, inStem, Bangalore 560065, India.
| |
Collapse
|