1
|
Monteil V, Kwon H, John L, Salata C, Jonsson G, Vorrink SU, Appelberg S, Youhanna S, Dyczynski M, Leopoldi A, Leeb N, Volz J, Hagelkruys A, Kellner MJ, Devignot S, Michlits G, Foong-Sobis M, Weber F, Lauschke VM, Horn M, Feldmann H, Elling U, Penninger JM, Mirazimi A. Identification of CCZ1 as an essential lysosomal trafficking regulator in Marburg and Ebola virus infections. Nat Commun 2023; 14:6785. [PMID: 37880247 PMCID: PMC10600203 DOI: 10.1038/s41467-023-42526-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Marburg and Ebola filoviruses are two of the deadliest infectious agents and several outbreaks have occurred in the last decades. Although several receptors and co-receptors have been reported for Ebola virus, key host factors remain to be elucidated. In this study, using a haploid cell screening platform, we identify the guanine nucleotide exchange factor CCZ1 as a key host factor in the early stage of filovirus replication. The critical role of CCZ1 for filovirus infections is validated in 3D primary human hepatocyte cultures and human blood-vessel organoids, both critical target sites for Ebola and Marburg virus tropism. Mechanistically, CCZ1 controls early to late endosomal trafficking of these viruses. In addition, we report that CCZ1 has a role in the endosomal trafficking of endocytosis-dependent SARS-CoV-2 infections, but not in infections by Lassa virus, which enters endo-lysosomal trafficking at the late endosome stage. Thus, we have identified an essential host pathway for filovirus infections in cell lines and engineered human target tissues. Inhibition of CCZ1 nearly completely abolishes Marburg and Ebola infections. Thus, targeting CCZ1 could potentially serve as a promising drug target for controlling infections caused by various viruses, such as SARS-CoV-2, Marburg, and Ebola.
Collapse
Affiliation(s)
- Vanessa Monteil
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, Stockholm, Sweden
| | - Hyesoo Kwon
- National Veterinary Institute, Uppsala, Sweden
| | - Lijo John
- National Veterinary Institute, Uppsala, Sweden
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Gustav Jonsson
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Sabine U Vorrink
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matheus Dyczynski
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Alexandra Leopoldi
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Nicole Leeb
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Jennifer Volz
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Max J Kellner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Stéphanie Devignot
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, Stockholm, Sweden
| | - Georg Michlits
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Michelle Foong-Sobis
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- University Tübingen, Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Moritz Horn
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ulrich Elling
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ali Mirazimi
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, Stockholm, Sweden.
- National Veterinary Institute, Uppsala, Sweden.
- Public Health Agency of Sweden, Solna, Sweden.
| |
Collapse
|
2
|
Hanzl A, Casement R, Imrichova H, Hughes SJ, Barone E, Testa A, Bauer S, Wright J, Brand M, Ciulli A, Winter GE. Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders. Nat Chem Biol 2023; 19:323-333. [PMID: 36329119 PMCID: PMC7614256 DOI: 10.1038/s41589-022-01177-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Targeted protein degradation is a novel pharmacology established by drugs that recruit target proteins to E3 ubiquitin ligases. Based on the structure of the degrader and the target, different E3 interfaces are critically involved, thus forming defined 'functional hotspots'. Understanding disruptive mutations in functional hotspots informs on the architecture of the assembly, and highlights residues susceptible to acquire resistance phenotypes. Here we employ haploid genetics to show that hotspot mutations cluster in substrate receptors of hijacked ligases, where mutation type and frequency correlate with gene essentiality. Intersection with deep mutational scanning revealed hotspots that are conserved or specific for chemically distinct degraders and targets. Biophysical and structural validation suggests that hotspot mutations frequently converge on altered ternary complex assembly. Moreover, we validated hotspots mutated in patients that relapse from degrader treatment. In sum, we present a fast and widely accessible methodology to characterize small-molecule degraders and associated resistance mechanisms.
Collapse
Affiliation(s)
- Alexander Hanzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ryan Casement
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK
| | - Hana Imrichova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Scott J Hughes
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK
- Amphista Therapeutics Ltd., Newhouse, UK
| | - Eleonora Barone
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Testa
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK
- Amphista Therapeutics Ltd., Newhouse, UK
| | - Sophie Bauer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Proxygen GmbH, Vienna, Austria
| | - Jane Wright
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK
| | - Matthias Brand
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Proxygen GmbH, Vienna, Austria
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK.
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
3
|
Vu V, Szewczyk MM, Nie DY, Arrowsmith CH, Barsyte-Lovejoy D. Validating Small Molecule Chemical Probes for Biological Discovery. Annu Rev Biochem 2022; 91:61-87. [PMID: 35363509 DOI: 10.1146/annurev-biochem-032620-105344] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small molecule chemical probes are valuable tools for interrogating protein biological functions and relevance as a therapeutic target. Rigorous validation of chemical probe parameters such as cellular potency and selectivity is critical to unequivocally linking biological and phenotypic data resulting from treatment with a chemical probe to the function of a specific target protein. A variety of modern technologies are available to evaluate cellular potency and selectivity, target engagement, and functional response biomarkers of chemical probe compounds. Here, we review these technologies and the rationales behind using them for the characterization and validation of chemical probes. In addition, large-scale phenotypic characterization of chemical probes through chemical genetic screening is increasingly leading to a wealth of information on the cellular pharmacology and disease involvement of potential therapeutic targets. Extensive compound validation approaches and integration of phenotypic information will lay foundations for further use of chemical probes in biological discovery. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada;
| | - David Y Nie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|