1
|
Yang S, Kim SH, Yang E, Kang M, Joo JY. Molecular insights into regulatory RNAs in the cellular machinery. Exp Mol Med 2024; 56:1235-1249. [PMID: 38871819 PMCID: PMC11263585 DOI: 10.1038/s12276-024-01239-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
It is apparent that various functional units within the cellular machinery are derived from RNAs. The evolution of sequencing techniques has resulted in significant insights into approaches for transcriptome studies. Organisms utilize RNA to govern cellular systems, and a heterogeneous class of RNAs is involved in regulatory functions. In particular, regulatory RNAs are increasingly recognized to participate in intricately functioning machinery across almost all levels of biological systems. These systems include those mediating chromatin arrangement, transcription, suborganelle stabilization, and posttranscriptional modifications. Any class of RNA exhibiting regulatory activity can be termed a class of regulatory RNA and is typically represented by noncoding RNAs, which constitute a substantial portion of the genome. These RNAs function based on the principle of structural changes through cis and/or trans regulation to facilitate mutual RNA‒RNA, RNA‒DNA, and RNA‒protein interactions. It has not been clearly elucidated whether regulatory RNAs identified through deep sequencing actually function in the anticipated mechanisms. This review addresses the dominant properties of regulatory RNAs at various layers of the cellular machinery and covers regulatory activities, structural dynamics, modifications, associated molecules, and further challenges related to therapeutics and deep learning.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eunjeong Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
2
|
Miao L, Kang Y, Zhang XF. Nanotechnology for the theranostic opportunity of breast cancer lung metastasis: recent advancements and future challenges. Front Bioeng Biotechnol 2024; 12:1410017. [PMID: 38882636 PMCID: PMC11176448 DOI: 10.3389/fbioe.2024.1410017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Lung metastasis of breast cancer is rapidly becoming a thorny problem in the treatment of patients with breast cancer and an obstacle to long-term survival. The main challenges of treatment are the absence of therapeutic targets and drug resistance, which promotes the development of nanotechnology in the diagnosis and treatment process. Taking advantage of the controllability and targeting of nanotechnology, drug-targeted delivery, controlled sustained release, multi-drug combination, improved drug efficacy, and reduced side effects can be realized in the process of the diagnosis and treatment of metastatic breast cancer (MBC). Several nanotechnology-based theranostic strategies have been investigated in breast cancer lung metastases (BCLM): targeted drug delivery, imaging analysis, immunotherapy, gene therapy, and multi-modality combined therapy, and some clinical applications are in the research phase. In this review, we present current nanotechnology-based diagnosis and treatment approaches for patients of incurable breast cancer with lung metastases, and we hope to be able to summarize more effective and promising nano-drug diagnosis and treatment systems that aim to improve the survival of patients with advanced MBC. We describe nanoplatform-based experimental studies and clinical trials targeting the tumor and the tumor microenvironment (TME) for BCLM to obtain more targeted treatment and in the future treatment steps for patients to provide a pioneering strategy.
Collapse
Affiliation(s)
- Lin Miao
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yue Kang
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xin Feng Zhang
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
3
|
Diener C, Keller A, Meese E. The miRNA-target interactions: An underestimated intricacy. Nucleic Acids Res 2024; 52:1544-1557. [PMID: 38033323 PMCID: PMC10899768 DOI: 10.1093/nar/gkad1142] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
MicroRNAs (miRNAs) play indispensable roles in posttranscriptional gene regulation. Their cellular regulatory impact is determined not solely by their sheer number, which likely amounts to >2000 individual miRNAs in human, than by the regulatory effectiveness of single miRNAs. Although, one begins to develop an understanding of the complex mechanisms underlying miRNA-target interactions (MTIs), the overall knowledge of MTI functionality is still rather patchy. In this critical review, we summarize key features of mammalian MTIs. We especially highlight latest insights on (i) the dynamic make-up of miRNA binding sites including non-canonical binding sites, (ii) the cooperativity between miRNA binding sites, (iii) the adaptivity of MTIs through sequence modifications, (iv) the bearing of intra-cellular miRNA localization changes and (v) the role of cell type and cell status specific miRNA interaction partners. The MTI biology is discussed against the background of state-of-the-art approaches with particular emphasis on experimental strategies for evaluating miRNA functionality.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)–Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| |
Collapse
|
4
|
Gan HH, Zinno J, Piano F, Gunsalus KC. Omicron Spike Protein Has a Positive Electrostatic Surface That Promotes ACE2 Recognition and Antibody Escape. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.894531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
High transmissibility is a hallmark of the Omicron variant of SARS-CoV-2. Understanding the molecular determinants of Omicron’s transmissibility will impact development of intervention strategies. Here we map the electrostatic potential surface of the Spike protein to show that major SARS-CoV-2 variants have accumulated positive charges in solvent-exposed regions of the Spike protein, especially its ACE2-binding interface. Significantly, the Omicron Spike-ACE2 complex has complementary electrostatic surfaces. In contrast, interfaces between Omicron and neutralizing antibodies tend to have similar positively charged surfaces. Structural modeling demonstrates that the electrostatic property of Omicron’s Spike receptor binding domain (S RBD) plays a role in enhancing ACE2 recognition and destabilizing Spike-antibody complexes. Specifically, the Omicron S RBD has favorable electrostatic interaction energy with ACE2 that is 3-5 times greater than the Delta variant over a range of 20 Å, implying efficient recognition of host receptors. Computed binding affinities of six representative S RBD-antibody complexes show that Omicron can escape most antibodies targeting the ACE2-binding region of S RBD. Interestingly, a straightforward assessment of the electrostatic surfaces of 18 neutralizing antibodies correctly predicted the Omicron escape status of 80% of cases. Collectively, our structural analysis implies that Omicron S RBD interaction interfaces have been optimized to simultaneously promote access to human ACE2 receptors and evade antibodies. These findings suggest that electrostatic interactions are a major contributing factor for increased Omicron transmissibility relative to other variants.
Collapse
|
5
|
Khatun MS, Alam MA, Shoombuatong W, Mollah MNH, Kurata H, Hasan MM. Recent development of bioinformatics tools for microRNA target prediction. Curr Med Chem 2021; 29:865-880. [PMID: 34348604 DOI: 10.2174/0929867328666210804090224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are central players that regulate the post-transcriptional processes of gene expression. Binding of miRNAs to target mRNAs can repress their translation by inducing the degradation or by inhibiting the translation of the target mRNAs. High-throughput experimental approaches for miRNA target identification are costly and time-consuming, depending on various factors. It is vitally important to develop the bioinformatics methods for accurately predicting miRNA targets. With the increase of RNA sequences in the post-genomic era, bioinformatics methods are being developed for miRNA studies specially for miRNA target prediction. This review summarizes the current development of state-of-the-art bioinformatics tools for miRNA target prediction, points out the progress and limitations of the available miRNA databases, and their working principles. Finally, we discuss the caveat and perspectives of the next-generation algorithms for the prediction of miRNA targets.
Collapse
Affiliation(s)
- Mst Shamima Khatun
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Ashad Alam
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112. United States
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700. Thailand
| | - Md Nurul Haque Mollah
- Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh. 5Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083. Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| |
Collapse
|
6
|
Gan HH, Twaddle A, Marchand B, Gunsalus KC. Structural Modeling of the SARS-CoV-2 Spike/Human ACE2 Complex Interface can Identify High-Affinity Variants Associated with Increased Transmissibility. J Mol Biol 2021; 433:167051. [PMID: 33992693 PMCID: PMC8118711 DOI: 10.1016/j.jmb.2021.167051] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic has triggered concerns about the emergence of more infectious and pathogenic viral strains. As a public health measure, efficient screening methods are needed to determine the functional effects of new sequence variants. Here we show that structural modeling of SARS-CoV-2 Spike protein binding to the human ACE2 receptor, the first step in host-cell entry, predicts many novel variant combinations with enhanced binding affinities. By focusing on natural variants at the Spike-hACE2 interface and assessing over 700 mutant complexes, our analysis reveals that high-affinity Spike mutations (including N440K, S443A, G476S, E484R, G502P) tend to cluster near known human ACE2 recognition sites (K31 and K353). These Spike regions are structurally flexible, allowing certain mutations to optimize interface interaction energies. Although most human ACE2 variants tend to weaken binding affinity, they can interact with Spike mutations to generate high-affinity double mutant complexes, suggesting variation in individual susceptibility to infection. Applying structural analysis to highly transmissible variants, we find that circulating point mutations S477N, E484K and N501Y form high-affinity complexes (~40% more than wild-type). By combining predicted affinities and available antibody escape data, we show that fast-spreading viral variants exploit combinatorial mutations possessing both enhanced affinity and antibody resistance, including S477N/E484K, E484K/N501Y and K417T/E484K/N501Y. Thus, three-dimensional modeling of the Spike/hACE2 complex predicts changes in structure and binding affinity that correlate with transmissibility and therefore can help inform future intervention strategies.
Collapse
Affiliation(s)
- Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States.
| | - Alan Twaddle
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States; NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Benoit Marchand
- High-Performance Computing, Center for Research Computing, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States; NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.
| |
Collapse
|
7
|
Cipriani PG, Bay O, Zinno J, Gutwein M, Gan HH, Mayya VK, Chung G, Chen JX, Fahs H, Guan Y, Duchaine TF, Selbach M, Piano F, Gunsalus KC. Novel LOTUS-domain proteins are organizational hubs that recruit C. elegans Vasa to germ granules. eLife 2021; 10:60833. [PMID: 34223818 PMCID: PMC8331183 DOI: 10.7554/elife.60833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 06/27/2021] [Indexed: 12/16/2022] Open
Abstract
We describe MIP-1 and MIP-2, novel paralogous C. elegans germ granule components that interact with the intrinsically disordered MEG-3 protein. These proteins promote P granule condensation, form granules independently of MEG-3 in the postembryonic germ line, and balance each other in regulating P granule growth and localization. MIP-1 and MIP-2 each contain two LOTUS domains and intrinsically disordered regions and form homo- and heterodimers. They bind and anchor the Vasa homolog GLH-1 within P granules and are jointly required for coalescence of MEG-3, GLH-1, and PGL proteins. Animals lacking MIP-1 and MIP-2 show temperature-sensitive embryonic lethality, sterility, and mortal germ lines. Germline phenotypes include defects in stem cell self-renewal, meiotic progression, and gamete differentiation. We propose that these proteins serve as scaffolds and organizing centers for ribonucleoprotein networks within P granules that help recruit and balance essential RNA processing machinery to regulate key developmental transitions in the germ line.
Collapse
Affiliation(s)
- Patricia Giselle Cipriani
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Olivia Bay
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - John Zinno
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Michelle Gutwein
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Vinay K Mayya
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - George Chung
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Jia-Xuan Chen
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Hala Fahs
- NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Yu Guan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Thomas F Duchaine
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Fabio Piano
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Ma B, Ma J, Yang Y, He X, Pan X, Wang Z, Qian Y. Effects of miR-330-3p on Invasion, Migration and EMT of Gastric Cancer Cells by Targeting PRRX1-Mediated Wnt/β-Catenin Signaling Pathway. Onco Targets Ther 2020; 13:3411-3423. [PMID: 32368097 PMCID: PMC7183782 DOI: 10.2147/ott.s238665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/05/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND miRNA, as a biological marker, had more and more attention in recent years due to the important role it plays in cancer. Currently, there are extensive studies on miRNAs, among which miR-330-3p is reported to be implicated in the pathophysiological processes of various cancers. However, little progress has been made in the mechanism of miR-330-3p in gastric cancer. OBJECTIVE To explore the expression and relevant mechanism of miR-330-3p and PRRX1 in gastric cancer (GC). METHODS Forty-five GC patients (study group), from whom paired GC and paracancerous tissues were collected, and another 45 healthy subjects (control group) who underwent physical examination during the same period were enrolled. In addition, GC cells and human gastric mucosa cells were purchased, and miR-330-3p-mimics, miR-330-3p-inhibitor, miR-NC, si-PRRX1, and sh-PRRX1 were transfected into MKN45, SGC7901 cell. QRT-PCR was employed to assess the miR-330-3p and PRRX1 expressions in the samples, and the cell expressions of PRRX1, GSK-3β, p-GSK-3β, β-catenin, p-β-catenin, cyclin D1, N-cadherin, E-cadherin and vimentin were evaluated by Western blot (WB). MTT, Transwell and wound-healing experiments were adopted to detect cell proliferation, invasion and migration. RESULTS MiR-330-3p was under-expressed, while PRRX1 was highly expressed in the serum of patients, both of which had an area under the curve (AUC) of more than 0.9. MiR-330-3p and PRRX1 were associated with tumor diameter, TNM staging, lymph node metastasis and differentiation of GC patients. Overexpression of miR-330-3p and inhibition of PRRX1 expression could suppress epithelial-mesenchymal transition (EMT), proliferation, invasion and apoptosis of cells. What is more, WB assay showed that overexpressed miR-330-3p and inhibited PRRX1 could inhibit the expression levels of p-GSK-3β, β-catenin, cyclin D1, N-cadherin and vimentin proteins, while elevating GSK-3β, p-β-catenin and E-cadherin protein expressions. Dual-luciferase reporter assay confirmed that there was a targeting relation between miR-330-3p and PRRX1. Furthermore, rescue experiments revealed that the cell proliferation, invasion, migration did not differ significantly between co-transfected miR-330-3p-mimics+sh-PRRX1, miR-330-3p-inhibitor+si-PRRX1 groups of MKN45 and SGC7901 and the miR-NC group (without transfected sequences). CONCLUSION Overexpressed miR-330-3p can promote cell EMT, proliferation, invasion and apoptosis through inhibiting PRRX1-mediated Wnt/β-catenin signaling pathway, which is expected to be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Bingqiang Ma
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Jianxun Ma
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Yili Yang
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Xueyuan He
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Xinmin Pan
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Zhan Wang
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Yaowen Qian
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| |
Collapse
|