1
|
Wang W, Chen D, Cai Y, Liu Z, Yang H, Xie H, Liu J, Yang S. Sodium alginate hydrogelation mediated paper-based POCT sensor for visual distance reading and smartphone-assisted colorimetric dual-signal determination of L-lactate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2077-2084. [PMID: 38511294 DOI: 10.1039/d4ay00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Herein, we present a paper-based POCT sensor based on lactate dehydrogenase-mediated alginate gelation combined with visual distance reading and smartphone-assisted colorimetric dual-signal analysis to determine the concentration of L-lactate in yogurt samples. In this research, L-lactate was transformed into pyruvate by lactate dehydrogenase. Pyruvate then triggered the gelation of a sol mixture, increasing the viscosity (ηs) of the mixture, which was shown as a decrease in the diffusion diameter on the paper-based sensor. In addition, protons from pyruvate accelerated the degradation of Rhodamine B, causing color fading of the mixture, which was analyzed using RGB analysis application software. Under optimal experimental conditions, the linear ranges of visual distance reading and smartphone-assisted colorimetric analysis were 0.1-15 μM and 0.3-15 μM and the detection limits were 0.03 μM and 0.07 μM, respectively. As a proof-of-concept application, we exploited the paper-based sensor to determine the concentration of L-lactate in yogurt samples. The results from the dual-signal paper-based sensor were consistent with the ones from HPLC analysis. In short, this study developed a simple, convenient, cost-effective, and feasible method for the quantitative detection of L-lactate in real samples.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, Hunan, 421001, China
| | - Danrong Chen
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, Hunan, 421001, China
| | - Yujiao Cai
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, Hunan, 421001, China
| | - Zijing Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, Hunan, 421001, China
| | - Hongfen Yang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, Hunan, 421001, China
| | - Hongbin Xie
- Hengyang Center for Disease Control and Prevention, Hengyang, Hunan, 421001, China
| | - Jinquan Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, Hunan, 421001, China
| | - Shengyuan Yang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
2
|
Alhusban AA, Hamadneh LA, Shallan AI, Tarawneh OA. Automated online monitoring of lactate and pyruvate in tamoxifen resistant MCF-7 cells using sequential-injection capillary electrophoresis with contactless conductivity detection (SI-CE-C 4D) and correlation with MCT1 and MCT4 genes expression. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2098760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ala A. Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Lama A. Hamadneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Aliaa I. Shallan
- Department of Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ola A. Tarawneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| |
Collapse
|