1
|
Liu Y, Chen H, Yang G, Feng F. Metabolomics and serum pharmacochemistry combined with network pharmacology uncover the potential effective ingredients and mechanisms of Yin-Chen-Si-Ni Decoction treating ANIT-induced cholestatic liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118713. [PMID: 39163894 DOI: 10.1016/j.jep.2024.118713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/22/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yin-Chen-Si-Ni Decoction is a classical traditional Chinese medicine (TCM) prescription that is used clinically for treating cholestatic liver injury (CLI) and other hepatic diseases. However, the material basis and underlying mechanisms of YCSND are not clear. AIM OF THE STUDY To investigate effective components and mechanisms of YCSND in the treatment of CLI using serum pharmacochemistry, metabolomics, and network pharmacology. MATERIALS AND METHODS Biochemical indicators, liver index, and histopathology analysis were adopted to evaluate the protective effect of YCSND on ANIT-induced CLI rats. Then, a UPLC-Q-Exactive Orbitrap MS/MS analysis of the migrant components in serum and liver including prototype and metabolic components was performed in YCSND. In addition, a study of the endogenous metabolites using serum and liver metabolomics was performed to discover potential biomarkers, metabolic pathways, and associated mechanisms. Further, the network pharmacology oriented by in vivo migrant components was also used to pinpoint the active ingredients, core targets, and signaling pathways of YCSND. Finally, molecular docking and molecular dynamics simulation (MDS) were used to predict the binding ability between components and core targets, and a real-time qPCR (RT-qPCR) experiment was used to measure the mRNA expression of the core target genes. RESULTS Pharmacodynamic studies suggest that YCSND could exert obvious hepatoprotective effects on CLI rats. Furthermore, 68 compounds, comprising 32 prototype components and 36 metabolic components from YCSND, were found by serum pharmacochemistry analysis. Network pharmacology combining molecular docking and MDS showed that apigenin, naringenin, 18β-glycyrrhetinic acid, and isoformononetin have better binding ability to 6 core targets (EGFR, AKT1, IL6, MMP9, CASP3, PPARG). Additionally, PI3K, TNF-α, MAPK3, and six core target genes in liver tissues were validated with RT-qPCR. Metabolomics revealed the anti-CLI effects of YCSND by regulating four metabolic pathways of primary bile acid and biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and arachidonic acid metabolism. Integrating metabolomics and network pharmacology identified four pathways related to CLI, including the PI3K-Akt, HIF-1, MAPK, and TNF signaling pathway, which revealed multiple mechanisms of YCSND against CLI that might involve anti-inflammatory and apoptosis. CONCLUSION The research based on serum pharmacochemistry, network pharmacology, and metabolomics demonstrates the beneficial hepatoprotective effects of YCSND on CLI rats by regulating multiple components, multiple targets, and multiple pathways, and provides a potent means of illuminating the material basis and mechanisms of TCM prescriptions.
Collapse
Affiliation(s)
- Yanru Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hui Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Gongjun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Fang Feng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Özcan Ö, den Elzen WPJ, Hillebrand JJ, den Heijer M, van Loendersloot LL, Fischer J, Hamer H, de Jonge R, Heijboer AC. The effect of hormonal contraceptive therapy on clinical laboratory parameters: a literature review. Clin Chem Lab Med 2024; 62:18-40. [PMID: 37419659 DOI: 10.1515/cclm-2023-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
Hormonal contraceptives (HC) are widely used among women in reproductive ages. In this review, the effects of HCs on 91 routine chemistry tests, metabolic tests, and tests for liver function, hemostatic system, renal function, hormones, vitamins and minerals were evaluated. Test parameters were differently affected by the dosage, duration, composition of HCs and route of administration. Most studies concerned the effects of combined oral contraceptives (COC) on the metabolic, hemostatic and (sex) steroids test results. Although the majority of the effects were minor, a major increase was seen in angiotensinogen levels (90-375 %) and the concentrations of the binding proteins (SHBG [∼200 %], CBG [∼100 %], TBG [∼90 %], VDBP [∼30 %], and IGFBPs [∼40 %]). Also, there were significant changes in levels of their bound molecules (testosterone, T3, T4, cortisol, vitamin D, IGF1 and GH). Data about the effects of all kinds of HCs on all test results are limited and sometimes inconclusive due to the large variety in HC, administration routes and dosages. Still, it can be concluded that HC use in women mainly stimulates the liver production of binding proteins. All biochemical test results of women using HC should be assessed carefully and unexpected test results should be further evaluated for both methodological and pre-analytical reasons. As HCs change over time, future studies are needed to learn more about the effects of other types, routes and combinations of HCs on clinical chemistry tests.
Collapse
Affiliation(s)
- Ömer Özcan
- Department of Laboratory Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Wendy P J den Elzen
- Department of Laboratory Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Jacquelien J Hillebrand
- Department of Laboratory Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Martin den Heijer
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Laura L van Loendersloot
- Department of Reproductive Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johan Fischer
- Department of Laboratory Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Henrike Hamer
- Department of Laboratory Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Robert de Jonge
- Department of Laboratory Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Laboratory Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Annemieke C Heijboer
- Department of Laboratory Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
- Department of Laboratory Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Qin Y, Tan J, Han X, Wang N, Zhai X, Lu Y. Effects of Yinzhihuang on Alleviating Cyclosporine A-Induced Cholestatic Liver Injury via Farnesoid X Receptor-Mediated Regulation of Transporters and Enzymes in Vitro and in Vivo. Biol Pharm Bull 2023; 46:1810-1819. [PMID: 38044100 DOI: 10.1248/bpb.b23-00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Yinzhihuang (YZH), a traditional Chinese medicine prescription, was widely used to treat cholestasis. Cholestatic liver injury limited the use of the immunosuppressive drug cyclosporine A (CsA) in preventing organ rejection after solid organ transplantation. Clinical evidences suggested that YZH could enhance bile acids and bilirubin clearance, providing a potential therapeutic strategy against CsA-induced cholestasis. Nevertheless, it remains unclear whether YZH can effectively alleviate CsA-induced cholestatic liver injury, as well as the molecular mechanisms responsible for its hepatoprotective effects. The purpose of the present study was to investigate the hepatoprotective effects of YZH on CsA-induced cholestatic liver injury and explore its molecular mechanisms in vivo and vitro. The results demonstrated that YZH significantly improved the CsA-induced cholestatic liver injury and reduced the level of liver function markers in serum of Sprague-Dawley (SD) rats. Targeted protein and gene analysis indicated that YZH increased bile acids and bilirubin efflux into bile through the regulation of multidrug resistance-associated protein 2 (Mrp2), bile salt export pump (Bsep), sodium taurocholate cotransporting polypeptide (Ntcp) and organic anion transporting polypeptide 2 (Oatp2) transport systems, as well as upstream nuclear receptors farnesoid X receptor (Fxr). Moreover, YZH modulated enzymes involved in bile acids synthesis and bilirubin metabolism including Cyp family 7 subfamily A member 1 (Cyp7a1) and uridine 5'-diphosphate (UDP) glucuronosyltransferase family 1 member A1 (Ugt1a1). Furthermore, the active components geniposidic acid, baicalin and chlorogenic acid exerted regulated metabolic enzymes and transporters in LO2 cells. In conclusion, YZH may prevent CsA-induced cholestasis by regulating the transport systems, metabolic enzymes, and upstream nuclear receptors Fxr to restore bile acid and bilirubin homeostasis. These findings highlight the potential of YZH as a therapeutic intervention for CsA-induced cholestasis and open avenues for further research into its clinical applications.
Collapse
Affiliation(s)
- Yanjie Qin
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Jingxuan Tan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Xuemei Han
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Nanxi Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Xuejia Zhai
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Clinical Research Centre for Precision Medicine for Critical Illness
| | - Yongning Lu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Clinical Research Centre for Precision Medicine for Critical Illness
| |
Collapse
|
4
|
Chen D, Zhao X, Xu H, Ren H, Liu T, Wang Y, Yang D, Yang Z. Noninvasive Assessment of APAP (N-acetyl-p-aminophenol)-Induced Hepatotoxicity Using Multiple MRI Parameters in an Experimental Rat Model. J Magn Reson Imaging 2022; 56:1809-1817. [PMID: 35420237 DOI: 10.1002/jmri.28203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Early detection and accurate assessment of N-acetyl-p-aminophenol (APAP)-induced hepatotoxicity can prevent further aggravation of liver injury and reduce the incidence of liver failure. PURPOSE To evaluate the potential of multiple MRI parameters for assessing APAP-induced hepatotoxicity in an experimental rat model. STUDY TYPE Prospective. ANIMAL MODEL Twenty-one APAP-treated rats and 12 control rats. FIELD STRENGTH/SEQUENCE A 3 T, T1 mapping, Gd-EOB-DTPA-enhanced MRI, and intravoxel incoherent motion (IVIM). ASSESSMENT The severity of histological changes was assessed by a liver pathologist. Rat livers were pathologically classified into three groups: normal (n = 12), mild necrosis (n = 13), and moderate necrosis (n = 8). T1 relaxation time (T1) and diffusion parameters were measured. The reduction rate of T1 (ΔT1%) at different time points, the maximum value of ΔT1%, time period to the maximum value of ΔT1%, and time period from ΔT1max (%) to 2/3 value of ΔT1max (%) (ΔT1-T2/3) were calculated. Transporters activities like organic anion-transporting polypeptide 1 (oatp1) and multidrug resistance-associated protein 2 (mrp2) were compared among different necrotic groups. STATISTICAL TESTS ANOVA/Kruskal-Wallis. Pearson/Spearman correlation. P < 0.05 was considered statistical significance. RESULTS T1 Precontrast and ΔT1-T2/3 were strongly correlated with the severity of necrosis (r = 0.9094; r = 0.7978, respectively) and showed significant differences between the two groups. The apparent diffusion coefficient (ADC) and tissue diffusivity (D) values were significantly lower in the moderate necrosis group than in the normal and mild necrosis groups. The oatp1 activity of the necrosis groups was significantly reduced compared to that of the normal group, but the differences between normal and mild (P = 0.21), normal and moderate group (P = 0.56) were not significant. Meanwhile, enlargement of bile canaliculi and sparse microvilli was observed in the necrotic groups. CONCLUSION MRI parameters such as precontrast T1 and ΔT1-T2/3 had promising potential in assessing the severity of early-stage hepatotoxicity in an APAP overdose rat model. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Dan Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China.,Department of Radiology, Weihai Municipal Hospital, Heping Road 70, Huancui District, Weihai, 264200, China
| | - Xinyan Zhao
- Department of Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Hao Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Tianhui Liu
- Department of Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Yu Wang
- Department of Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| |
Collapse
|
5
|
Knebel C, Süssmuth RD, Hammer HS, Braeuning A, Marx-Stoelting P. New Approach Methods for Hazard Identification: A Case Study with Azole Fungicides Affecting Molecular Targets Associated with the Adverse Outcome Pathway for Cholestasis. Cells 2022; 11:cells11203293. [PMID: 36291160 PMCID: PMC9600068 DOI: 10.3390/cells11203293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Triazole fungicides such as propiconazole (Pi) or tebuconazole (Te) show hepatotoxicity in vivo, e.g., hypertrophy and vacuolization of liver cells following interaction with nuclear receptors such as PXR (pregnane-X-receptor) and CAR (constitutive androstane receptor). Accordingly, azoles affect gene expression associated with these adverse outcomes in vivo but also in human liver cells in vitro. Additionally, genes indicative of liver cholestasis are affected in vivo and in vitro. We therefore analyzed the capability of Pi and Te to cause cholestasis in an adverse outcome pathway (AOP)-driven approach in hepatic cells of human origin in vitro, considering also previous in vivo studies. Bile salt export pump (BSEP) activity assays confirmed that both azoles are weak inhibitors of BSEP. They alternate the expression of various cholestasis-associated target genes and proteins as well as the mitochondrial membrane function. Published in vivo data, however, demonstrate that neither Pi nor Te cause cholestasis in rodent bioassays. This discrepancy can be explained by the in vivo concentrations of both azoles being well below their EC50 for BSEP inhibition. From a regulatory perspective, this illustrates that toxicogenomics and human in vitro models are valuable tools to detect the potential of a substance to cause a specific type of toxicity. To come to a sound regulatory conclusion on the in vivo relevance of such a finding, results will have to be considered in a broader context also including toxicokinetics in a weight-of-evidence approach.
Collapse
Affiliation(s)
- Constanze Knebel
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
| | - Roderich D. Süssmuth
- Institute of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Helen S. Hammer
- Signatope GmbH, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
- Correspondence: (A.B.); (P.M.-S.); Tel.: +49-(0)30-18412-25100 (A.B.); Fax: +49-(0)30-18412-63758 (A.B.)
| | - Philip Marx-Stoelting
- Department Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
- Correspondence: (A.B.); (P.M.-S.); Tel.: +49-(0)30-18412-25100 (A.B.); Fax: +49-(0)30-18412-63758 (A.B.)
| |
Collapse
|
6
|
Jia X, Wen X, Russo DP, Aleksunes LM, Zhu H. Mechanism-driven modeling of chemical hepatotoxicity using structural alerts and an in vitro screening assay. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129193. [PMID: 35739723 PMCID: PMC9262097 DOI: 10.1016/j.jhazmat.2022.129193] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 05/20/2023]
Abstract
Traditional experimental approaches to evaluate hepatotoxicity are expensive and time-consuming. As an advanced framework of risk assessment, adverse outcome pathways (AOPs) describe the sequence of molecular and cellular events underlying chemical toxicities. We aimed to develop an AOP that can be used to predict hepatotoxicity by leveraging computational modeling and in vitro assays. We curated 869 compounds with known hepatotoxicity classifications as a modeling set and extracted assay data from PubChem. The antioxidant response element (ARE) assay, which quantifies transcriptional responses to oxidative stress, showed a high correlation to hepatotoxicity (PPV=0.82). Next, we developed quantitative structure-activity relationship (QSAR) models to predict ARE activation for compounds lacking testing results. Potential toxicity alerts were identified and used to construct a mechanistic hepatotoxicity model. For experimental validation, 16 compounds in the modeling set and 12 new compounds were selected and tested using an in-house ARE-luciferase assay in HepG2-C8 cells. The mechanistic model showed good hepatotoxicity predictivity (accuracy = 0.82) for these compounds. Potential false positive hepatotoxicity predictions by only using ARE results can be corrected by incorporating structural alerts and vice versa. This mechanistic model illustrates a potential toxicity pathway for hepatotoxicity, and this strategy can be expanded to develop predictive models for other complex toxicities.
Collapse
Affiliation(s)
- Xuelian Jia
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Xia Wen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Daniel P Russo
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA; Department of Chemistry, Rutgers University, Camden, NJ 08102, USA.
| |
Collapse
|
7
|
Ahmad W, Waqar M, Hadi MH, Muhammad AS, Iqbal N. Acute Cholestatic Liver Injury Due to Ciprofloxacin in a Young Healthy Adult. Cureus 2021; 13:e13340. [PMID: 33747648 PMCID: PMC7967918 DOI: 10.7759/cureus.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ciprofloxacin is a commonly prescribed antibiotic due to its broad spectrum and good safety profile. However, recent evidence suggests that it has the propensity to cause idiosyncratic drug-induced liver injury. There are 25 reported cases of ciprofloxacin induced severe liver injury in the literature. Here, we describe another case of acute cholestatic liver injury due to ciprofloxacin. A 32-year-old female presented to the gastroenterology department with a week's history of pruritus, jaundice, and abdominal pain. Her symptoms started three days after completing a ciprofloxacin course for urinary tract infection. Her hepatic enzymes were elevated and showed a cholestatic pattern. An extensive workup, including viral serology, autoimmune profile, and imaging studies, did not reveal any underlying cholestasis cause. Her liver biopsy findings were consistent with drug-induced cholestasis. A diagnosis of ciprofloxacin-induced cholestatic liver injury was made based on the onset of symptoms and liver enzyme derangements following the use of ciprofloxacin, improvement in clinical as well as biochemical parameters after cessation of ciprofloxacin, and the liver biopsy findings. The patient received supportive treatment, and her liver enzymes returned to baseline six weeks after admission. Clinicians need to be aware that if the patient develops any liver injury symptoms while using ciprofloxacin, the drug should be stopped immediately, and a thorough evaluation should be done. The patient should also be advised to avoid ciprofloxacin and other quinolones in the future.
Collapse
Affiliation(s)
- Wiqas Ahmad
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Gastroenterology and Hepatology, Hayatabad Medical Complex Peshawar, Peshawar, PAK
| | - Muhammad Waqar
- Internal Medicine, The Dudley Group NHS Foundation Trust, Dudley, GBR
| | - Muhammad Hanif Hadi
- Gastroenterology and Hepatology, Hayatabad Medical Complex Peshawar, Peshawar, PAK
| | - Agha Syed Muhammad
- Internal Medicine and Gastroenterology, Russells Hall Hospital, Dudley, GBR
| | - Nasir Iqbal
- Internal Medicine, Khyber Teaching Hospital, Peshawar, PAK
| |
Collapse
|
8
|
Abstract
Drug-induced liver injury (DILI), including herbal and dietary supplement hepatotoxicity, is often passed lightly; however, it can lead to the requirement of a liver transplant or may even cause death because of liver failure. Recently, the American College of Gastroenterology, Chinese Society of Hepatology and European Association for the Study of the Liver guidelines for the diagnosis and treatment of DILI have been established, and they will be helpful for guiding clinical treatment decisions. Roussel Uclaf Causality Assessment Method scoring is the most commonly used method to diagnose DILI; however, it has some limitations, such as poor validity and reproducibility. Recently, studies on new biomarkers have been actively carried out, which will help diagnose DILI and predict the prognosis of DILI. It is expected that the development of new therapies such as autophagy inducers and various other technologies of the fourth industrial revolution will be applicable to DILI research.
Collapse
Affiliation(s)
- Jeong Ill Suh
- Department of Internal Medicine, College of Medicine, Dongguk Unversity, Gyeongju, Korea
| |
Collapse
|