1
|
Tran NKC, Jeong JH, Sharma N, Nguyen YND, Park JH, Nguyen KNT, Tran HYP, Dang DK, Kim HC, Shin EJ. Neuroinflammation Involving Endothelin-1 and Platelet-Activating Factor Receptors Contributes To Self-Injurious Behaviors Induced by Bay k-8644 in Adolescent Mice. Neurochem Res 2025; 50:141. [PMID: 40220052 DOI: 10.1007/s11064-025-04387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Bay k-8644, an activator of L-type voltage-gated calcium channels, induces self-injurious behaviors in mice. Although previous studies using animal models have suggested the possible implications of neuroinflammation in self-injurious behaviors, this has not yet been elucidated in the context of Bay k-8644-induced self-injurious behaviors. In this study, Bay k-8644 (50 µg, i.c.v.)-induced self-injurious behaviors were accompanied by increased expression of endothelin (ET)-1, platelet-activating factor (PAF) receptors, and Iba-1 in the striatum. Pretreatment with the ET receptor antagonist bosentan (10 mg/kg, i.p.), the PAF receptor antagonist ginkgolide B (10 mg/kg, i.p.), or the microglial activation inhibitor minocycline (40 mg/kg/day for 5 days, i.p.) significantly inhibited Bay k-8644-induced self-injurious behaviors and microglial activation in the striatum. Interestingly, bosentan also suppressed Bay k-8644-induced PAF receptor expression, indicating that ET-1 may act as an upstream modulator of the PAF signaling under these experimental conditions. Bay k-8644-induced ET-1 expression and consequent pro-inflammatory changes were reversed by the protein kinase C (PKC) inhibitor NPC-15,437 and the Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor KN-93. Moreover, Bay k-8644-induced self-injurious behaviors and microglial activation were significantly potentiated by exogenous ET-1 administration (10 pmol, i.c.v.) or by weak neuroinflammation in the striatum induced by systemic injection of low-dose lipopolysaccharide (LPS; 1 mg/kg, i.p.). Our results suggest that neuroinflammatory changes associated with ET-1/PAF signaling in the striatum contribute to Bay k-8644-induced self-injurious behaviors.
Collapse
Affiliation(s)
- Ngoc Kim Cuong Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yen Nhi Doan Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Khanh Ngan Thi Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hoang-Yen Phi Tran
- Physical Chemistry Department, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 760000, Viet Nam
| | - Duy-Khanh Dang
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Zhang K, Ibrahim GM, Venetucci Gouveia F. Molecular Pathways, Neural Circuits and Emerging Therapies for Self-Injurious Behaviour. Int J Mol Sci 2025; 26:1938. [PMID: 40076564 PMCID: PMC11900092 DOI: 10.3390/ijms26051938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Nonsuicidal self-injurious behaviour (SIB) is a debilitating manifestation of physical aggression commonly observed across neurodevelopmental, psychiatric, and genetic disorders. This behaviour arises from a multifactorial aetiology involving genetic predispositions, epigenetic modifications, neurotransmitter dysregulation, and environmental stressors. Dysregulation in dopaminergic, serotonergic, glutamatergic, and GABAergic systems has been implicated in the pathophysiology of SIB, alongside structural and functional abnormalities within fronto-limbic-striatal circuits. These disruptions impair key processes, such as emotional regulation, reward processing, and behavioural inhibition, contributing to the emergence and reinforcement of SIB. Advances in preclinical research using genetic, lesion-based, pharmacological, and environmental animal models have been instrumental in elucidating the molecular and neurocircuitry underpinnings of SIB. Emerging neuromodulation therapies targeting critical nodes within the fronto-limbic-striatal network, particularly deep brain stimulation, have shown promise in treating severe, refractory SIB and improving quality of life. This review integrates current evidence from clinical studies, molecular research, and preclinical models to provide a comprehensive overview of the pathophysiology of SIB and therapeutic approaches. By focusing on the molecular mechanisms and neural circuits underlying SIB, we highlight the translational potential of emerging pharmacological and neuromodulatory therapies. A deeper understanding of these pathways will pave the way for precision-based interventions, bridging the gap between molecular research and clinical applications in SIB and related conditions.
Collapse
Affiliation(s)
- Kristina Zhang
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H2, Canada
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - George M. Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H2, Canada
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | |
Collapse
|
3
|
Zhang Y, Lai S, Wu W, Wang Y, Zhao H, He J, Zhu Y, Chen G, Qi Z, Chen P, Lv S, Song Z, Hu Y, Miao H, Yan S, Luo Y, Ran H, Huang X, Lu X, Zhong S, Jia Y. Associations between executive function impairment and biochemical abnormalities in depressed adolescents with non-suicidal self-injury. J Affect Disord 2022; 298:492-499. [PMID: 34737017 DOI: 10.1016/j.jad.2021.10.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND H protons magnetic resonance spectroscopy (1H-MRS) has been used to detect the biochemical metabolism changes and the mechanism of executive dysfunction in major depressive disorder (MDD). While, finding information associated with non-suicidal self-injury (NSSI) among adolescents with MDD is challenging. The present study aimed to examine the executive function and biochemical metabolism alterations, as well as to elucidate their associations in depressed adolescents with NSSI. METHODS A total of 86 adolescents with MDD (40 with NSSI, and 46 without NSSI) and 28 healthy controls were recruited in the current study. The executive function was assessed by Digital symbol test (DST), Wisconsin Card Sorting Test (WCST), Trail Making Test, part B (TMT-B), and Verbal fluency (VF). Bilateral metabolite levels of the prefrontal cortex (PFC), anterior cingulated cortex (ACC), lenticular nucleus (LN) of basal ganglia and thalamus were obtained by 1H-MRS at 3.0 T, and then the ratios of N-acetyl aspartate (NAA) and choline-containing compounds (Cho) to creatine (Cr) were determined, respectively. Finally, association analysis was conducted to investigate their relationships. RESULTS The depressed adolescents with NSSI showed significantly lower VF scores than those without NSSI and healthy controls. We also found significantly higher NAA/Cr ratios in the right thalamus, while significantly lower Cho/Cr ratios in the right thalamus of NSSI group than the MDD without NSSI group and healthy controls. And NSSI group also showed lower NAA/Cr ratio in the right LN than the MDD without NSSI group. For MDD with NSSI, the NAA/Cr ratios of the left thalamus were positively correlated with the time of TMTB and the Cho/Cr ratios of the left ACC were positively correlated with the VF scores. CONCLUSIONS Depressed adolescents with NSSI may have executive dysfunction and NAA and Cho metabolism abnormalities in the thalamus. And the NAA/Cr ratios of the right LN could distinguish NSSI from depressed adolescents. Further, the executive dysfunction may be associated with the abnormal NAA metabolism in the left thalamus and ACC.
Collapse
Affiliation(s)
- Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weige Wu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; The Department of Child and Adolescent Psychology Xiamen Xianyue hospital, Fujian 361012, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yunxia Zhu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guangmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Sihui Lv
- School of Management, Jinan University, Guangzhou 510316, China
| | - Zijin Song
- School of Management, Jinan University, Guangzhou 510316, China
| | - Yilei Hu
- School of Management, Jinan University, Guangzhou 510316, China
| | - Haofei Miao
- School of Management, Jinan University, Guangzhou 510316, China
| | - Shuya Yan
- School of Management, Jinan University, Guangzhou 510316, China
| | - Yange Luo
- School of Management, Jinan University, Guangzhou 510316, China
| | - Hanglin Ran
- School of Management, Jinan University, Guangzhou 510316, China
| | - Xiaosi Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaodan Lu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
4
|
Novak MA, Meyer JS. A Rhesus Monkey Model of Non-suicidal Self-Injury. Front Behav Neurosci 2021; 15:674127. [PMID: 34421551 PMCID: PMC8374142 DOI: 10.3389/fnbeh.2021.674127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Non-suicidal self-injury (NSSI) is a type of behavioral pathology seen not only in a variety of clinical conditions but also among non-clinical populations, particularly adolescents and young adults. With the exception of rare genetic conditions that give rise to self-harming behaviors, the etiology of NSSI and the events that trigger specific episodes of this behavior remain poorly understood. This review presents the features of an important, extensively studied animal model of NSSI, namely spontaneously occurring self-injurious behavior (SIB) in rhesus macaque monkeys. We compare and contrast rhesus monkey SIB with NSSI with respect to form, prevalence rates, environmental and biological risk factors, behavioral correlates, proposed functions, and treatment modalities. Many parallels between rhesus monkey SIB and NSSI are demonstrated, which supports the validity of this animal model across several domains. Determining the etiology of spontaneously occurring SIB in monkeys, its underlying biological mechanisms, and which pharmacological agents are most effective for treating the disorder may aid in identifying potential risk factors for the occurrence of NSSI in humans and developing medications for severe cases that are resistant to conventional psychotherapeutic approaches.
Collapse
Affiliation(s)
- Melinda A Novak
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, United States
| | - Jerrold S Meyer
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
5
|
Enhanced Dopamine Transmission and Hyperactivity in the Dopamine Transporter Heterozygous Mice Lacking the D3 Dopamine Receptor. Int J Mol Sci 2020; 21:ijms21218216. [PMID: 33153031 PMCID: PMC7662256 DOI: 10.3390/ijms21218216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Dopamine transporter knockout (DATk) mice are known to demonstrate profound hyperactivity concurrent with elevated (5-fold) extracellular dopamine in the basal ganglia. At the same time, heterozygous DAT mice (DATh) demonstrate a 2-fold increase in dopamine levels yet only a marginal elevation in locomotor activity level. Another model of dopaminergic hyperactivity is the D3 dopamine receptor knockout (D3k) mice, which present only a modest hyperactivity phenotype, predominately manifested as stereotypical behaviors. In the D3k mice, the hyperactivity is also correlated with elevated extracellular dopamine levels (2-fold) in the basal ganglia. Cross-breeding was used to evaluate the functional consequences of the deletion of both genes. In the heterozygous DAT mice, inactivation of the D3R gene (DATh/D3k) resulted in significant hyperactivity and further elevation of striatal extracellular dopamine above levels observed in respective single mutant mice. The decreased weight of DATk mice was evident regardless of the D3 dopamine receptor genotype. In contrast, measures of thermoregulation revealed that the marked hypothermia of DATk mice (−2 °C) was reversed in double knockout mice. Thus, the extracellular dopamine levels elevated by prolonging uptake could be elevated even further by eliminating the D3 receptor. These data also suggest that the hypothermia observed in DATk mice may be mediated through D3 receptors.
Collapse
|