1
|
Wisniewski É, Czárán D, Kovács F, Bahurek E, Németh A, Sasvári P, Szanda G, Pettkó-Szandtner A, Klement E, Ligeti E, Csépányi-Kömi R. A novel BRET-Based GAP assay reveals phosphorylation-dependent regulation of the RAC-specific GTPase activating protein ARHGAP25. FASEB J 2022; 36:e22584. [PMID: 36190314 DOI: 10.1096/fj.202200689r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
ARHGAP25, a RAC-specific GTPase activating protein (GAP), is an essential regulator of phagocyte effector functions such as phagocytosis, superoxide production, and transendothelial migration. Furthermore, its complex role in tumor behavior has recently been recognized. We previously demonstrated that phosphorylation of serine 363 in ARHGAP25 regulates hematopoietic stem cells and progenitor cells in mouse bone marrow. However, the significance of other potential phosphorylation sites of ARHGAP25 remained unknown. Now, we developed a novel, real-time bioluminescence resonance energy transfer (BRET) assay to monitor the GAP activity of ARHGAP25 in vitro. Using this approach, we revealed that phosphorylation of S363 and S488, but not that of S379-380, controls ARHGAP25's RACGAP activity. On the other hand, we found in granulocyte-differentiated human PLB-985 cells that superoxide production and actin depolymerization are regulated by residues S363 and S379-380. The present data demonstrate the value of our BRET-GAP assay and show that different phosphorylation patterns regulate ARHGAP25's GAP activity and its effect on superoxide production and phagocytosis.
Collapse
Affiliation(s)
- Éva Wisniewski
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Domonkos Czárán
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Fanni Kovács
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Enikő Bahurek
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Afrodité Németh
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Péter Sasvári
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gergő Szanda
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | | | - Eva Klement
- Laboratory of Proteomics Research, Biological Research Centre, Szeged, Hungary.,Single Cell Omics ACF, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
| | - Erzsébet Ligeti
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
2
|
Viczián A, Ádám É, Staudt AM, Lambert D, Klement E, Romero Montepaone S, Hiltbrunner A, Casal J, Schäfer E, Nagy F, Klose C. Differential phosphorylation of the N-terminal extension regulates phytochrome B signaling. THE NEW PHYTOLOGIST 2020; 225:1635-1650. [PMID: 31596952 DOI: 10.1111/nph.16243] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/24/2019] [Indexed: 05/04/2023]
Abstract
Phytochrome B (phyB) is an excellent light quality and quantity sensor that can detect subtle changes in the light environment. The relative amounts of the biologically active photoreceptor (phyB Pfr) are determined by the light conditions and light independent thermal relaxation of Pfr into the inactive phyB Pr, termed thermal reversion. Little is known about the regulation of thermal reversion and how it affects plants' light sensitivity. In this study we identified several serine/threonine residues on the N-terminal extension (NTE) of Arabidopsis thaliana phyB that are differentially phosphorylated in response to light and temperature, and examined transgenic plants expressing nonphosphorylatable and phosphomimic phyB mutants. The NTE of phyB is essential for thermal stability of the Pfr form, and phosphorylation of S86 particularly enhances the thermal reversion rate of the phyB Pfr-Pr heterodimer in vivo. We demonstrate that S86 phosphorylation is especially critical for phyB signaling compared with phosphorylation of the more N-terminal residues. Interestingly, S86 phosphorylation is reduced in light, paralleled by a progressive Pfr stabilization under prolonged irradiation. By investigating other phytochromes (phyD and phyE) we provide evidence that acceleration of thermal reversion by phosphorylation represents a general mechanism for attenuating phytochrome signaling.
Collapse
Affiliation(s)
- András Viczián
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Éva Ádám
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary
- Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, H-6726, Szeged, Hungary
| | - Anne-Marie Staudt
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany
| | - Dorothee Lambert
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany
| | - Eva Klement
- Laboratory of Proteomics Research, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Sofia Romero Montepaone
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1417DSE, Buenos Aires, Argentina
| | - Andreas Hiltbrunner
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Jorge Casal
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1417DSE, Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWE, Buenos Aires, Argentina
| | - Eberhard Schäfer
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Cornelia Klose
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|