1
|
Chen L, Dickerhoff J, Zheng KW, Erramilli S, Feng H, Wu G, Onel B, Chen Y, Wang KB, Carver M, Lin C, Sakai S, Wan J, Vinson C, Hurley L, Kossiakoff AA, Deng N, Bai Y, Noinaj N, Yang D. Structural basis for nucleolin recognition of MYC promoter G-quadruplex. Science 2025; 388:eadr1752. [PMID: 40245140 PMCID: PMC12083725 DOI: 10.1126/science.adr1752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/28/2025] [Indexed: 04/19/2025]
Abstract
The MYC oncogene promoter G-quadruplex (MycG4) regulates transcription and is a prevalent G4 locus in immortal cells. Nucleolin, a major MycG4-binding protein, exhibits greater affinity for MycG4 than for nucleolin recognition element (NRE) RNA. Nucleolin's four RNA binding domains (RBDs) are essential for high-affinity MycG4 binding. We present the 2.6-angstrom crystal structure of the nucleolin-MycG4 complex, revealing a folded parallel three-tetrad G-quadruplex with two coordinating potassium ions (K+), interacting with RBD1, RBD2, and Linker12 through its 6-nucleotide (nt) central loop and 5' flanking region. RBD3 and RBD4 bind MycG4's 1-nt loops as demonstrated by nuclear magnetic resonance (NMR). Cleavage under targets and tagmentation sequencing confirmed nucleolin's binding to MycG4 in cells. Our results revealed a G4 conformation-based recognition by a regulating protein through multivalent interactions, suggesting that G4s are nucleolin's primary cellular substrates, indicating G4 epigenetic transcriptional regulation and helping G4-targeted drug discovery.
Collapse
Affiliation(s)
- Luying Chen
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Jonathan Dickerhoff
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Ke-wei Zheng
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Satchal Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guanhui Wu
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Buket Onel
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Yuwei Chen
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Kai-Bo Wang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Megan Carver
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Clement Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Saburo Sakai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology, Kanagawa 237-0061, Japan
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laurence Hurley
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Danzhou Yang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
- Purdue Institute for Drug Discovery Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Zhang J, Gong J, Chen J, Chen H. Protocol for forming G-quadruplexes from double-stranded DNA during transcription. STAR Protoc 2025; 6:103677. [PMID: 40085648 PMCID: PMC11952794 DOI: 10.1016/j.xpro.2025.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/09/2025] [Accepted: 02/13/2025] [Indexed: 03/16/2025] Open
Abstract
G-quadruplexes are four-stranded nucleic acid structures that play vital roles in regulating gene expression, maintaining genomic stability, and supporting various biological processes. This protocol details their formation from double-stranded DNA via in vitro transcription. It includes steps for selecting suitable DNA templates, assembling necessary components (such as RNA polymerase, nucleotides, and buffers), setting optimal incubation conditions, and performing dimethyl sulfate (DMS) footprinting to analyze the structures. For complete details on the use and execution of this protocol, please refer to Zhang et al.1 and Gong et al.2.
Collapse
Affiliation(s)
- Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiayuan Gong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | - Hanqing Chen
- Department of Nutrition & Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China; Department of Gastroenterology and Hepatology, Center for Medical Research on Innovation and Translation, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510320, China.
| |
Collapse
|
3
|
Singh A, Majee P, Mishra L, Prajapat SK, Sharma TK, Kalia M, Kumar A. Role of RNA G-Quadruplexes in the Japanese Encephalitis Virus Genome and Their Recognition as Prospective Antiviral Targets. ACS Infect Dis 2025; 11:558-572. [PMID: 39436355 DOI: 10.1021/acsinfecdis.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
G-quadruplexes (GQs) have been primarily studied in the context of cancer and neurodegenerative pathologies. However, recent research has shifted focus to their existence and functional roles in viral genomes, revealing GQ-regulated key pathways in various human pathogenic viruses. While GQ structures have been reported in the genomes of emerging and re-emerging viruses, RNA viruses have been understudied compared to DNA viruses, including notable examples such as human immunodeficiency virus-1, hepatitis C virus, Ebola virus, Nipah virus, Zika virus, and SARS-CoV-2. The flavivirus family, comprising the Japanese encephalitis virus (JEV), poses a significant global threat due to recurring outbreaks yet lacks approved antivirals. In this study, we identified and characterized eight putative G-quadruplex-forming motifs within essential genes involved in genome replication, assembly, and internalization in the host cell, conserved across different JEV isolates. The formation and stability of these motifs were validated through a multitude of biophysical and cell-based assays. The interaction and binding affinity of these motifs with the known GQ-binding ligand BRACO-19 were supported by biophysical assays, confirming the capability of these motifs to form GQ structures. Notably, BRACO-19 also exerted antiviral properties through reduction of viral replication and infectious virus titers as well as inhibition of viral protein expression, as evaluated by the cell-based assays. This comprehensive molecular characterization of G-quadruplex structures within the JEV genome highlights their potential as promising antiviral targets for intervention strategies against JEV infection through GQ-specific ligands.
Collapse
Affiliation(s)
- Aakriti Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| | - Prativa Majee
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| | - Laxmi Mishra
- Virology Research Group, Regional Centre for Biotechnology, Faridabad 121001, India
| | | | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar 382355, India
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, Faridabad 121001, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| |
Collapse
|
4
|
Peixoto ML, Madan E. Unraveling the complexity: Advanced methods in analyzing DNA, RNA, and protein interactions. Adv Cancer Res 2024; 163:251-302. [PMID: 39271265 DOI: 10.1016/bs.acr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Exploring the intricate interplay within and between nucleic acids, as well as their interactions with proteins, holds pivotal significance in unraveling the molecular complexities steering cancer initiation and progression. To investigate these interactions, a diverse array of highly specific and sensitive molecular techniques has been developed. The selection of a particular technique depends on the specific nature of the interactions. Typically, researchers employ an amalgamation of these different techniques to obtain a comprehensive and holistic understanding of inter- and intramolecular interactions involving DNA-DNA, RNA-RNA, DNA-RNA, or protein-DNA/RNA. Examining nucleic acid conformation reveals alternative secondary structures beyond conventional ones that have implications for cancer pathways. Mutational hotspots in cancer often lie within sequences prone to adopting these alternative structures, highlighting the importance of investigating intra-genomic and intra-transcriptomic interactions, especially in the context of mutations, to deepen our understanding of oncology. Beyond these intramolecular interactions, the interplay between DNA and RNA leads to formations like DNA:RNA hybrids (known as R-loops) or even DNA:DNA:RNA triplex structures, both influencing biological processes that ultimately impact cancer. Protein-nucleic acid interactions are intrinsic cellular phenomena crucial in both normal and pathological conditions. In particular, genetic mutations or single amino acid variations can alter a protein's structure, function, and binding affinity, thus influencing cancer progression. It is thus, imperative to understand the differences between wild-type (WT) and mutated (MT) genes, transcripts, and proteins. The review aims to summarize the frequently employed methods and techniques for investigating interactions involving nucleic acids and proteins, highlighting recent advancements and diverse adaptations of each technique.
Collapse
Affiliation(s)
- Maria Leonor Peixoto
- Champalimaud Center for the Unknown, Lisbon, Portugal; Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Esha Madan
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
5
|
Gribling-Burrer AS, Bohn P, Smyth RP. Isoform-specific RNA structure determination using Nano-DMS-MaP. Nat Protoc 2024; 19:1835-1865. [PMID: 38347203 DOI: 10.1038/s41596-024-00959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/12/2023] [Indexed: 06/12/2024]
Abstract
RNA structure determination is essential to understand how RNA carries out its diverse biological functions. In cells, RNA isoforms are readily expressed with partial variations within their sequences due, for example, to alternative splicing, heterogeneity in the transcription start site, RNA processing or differential termination/polyadenylation. Nanopore dimethyl sulfate mutational profiling (Nano-DMS-MaP) is a method for in situ isoform-specific RNA structure determination. Unlike similar methods that rely on short sequencing reads, Nano-DMS-MaP employs nanopore sequencing to resolve the structures of long and highly similar RNA molecules to reveal their previously hidden structural differences. This Protocol describes the development and applications of Nano-DMS-MaP and outlines the main considerations for designing and implementing a successful experiment: from bench to data analysis. In cell probing experiments can be carried out by an experienced molecular biologist in 3-4 d. Data analysis requires good knowledge of command line tools and Python scripts and requires a further 3-5 d.
Collapse
Affiliation(s)
- Anne-Sophie Gribling-Burrer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
| | - Patrick Bohn
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
- Faculty of Medicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
6
|
Zhao Z, Wang J, Yu H, Wang X. Guide for phenotype-specific profiling of DNA G-quadruplex-regulated genes. STAR Protoc 2024; 5:102820. [PMID: 38198280 PMCID: PMC10820308 DOI: 10.1016/j.xpro.2023.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
DNA G-quadruplex (G4) is a non-canonical four-stranded secondary structure that has been shown to play a role in epigenetic modulation of gene expression. Here, we present a primer on phenotype-specific profiling of DNA G-quadruplex-regulated genes. We provide guidance on in silico exploration of G4-related genes and phenotypes, and in vitro and in vivo validation of the relationship between G4 and phenotype. We describe commonly utilized techniques and detail critical steps involved in determining the phenotype-specific G4-regulated genes for subsequent investigations.
Collapse
Affiliation(s)
- Zhuoyang Zhao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Huichuan Yu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China.
| | - Xiaolin Wang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China.
| |
Collapse
|
7
|
Analytical Perspectives in the Study of Polyvalent Interactions of Free and Surface-Bound Oligonucleotides and Their Implications in Affinity Biosensing. Int J Mol Sci 2022; 24:ijms24010175. [PMID: 36613616 PMCID: PMC9820729 DOI: 10.3390/ijms24010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The high affinity and/or selectivity of oligonucleotide-mediated binding offers a myriad of therapeutical and analytical applications, whose rational design implies an accurate knowledge of the involved molecular mechanisms, concurring equilibrium processes and key affinity parameters. Oligonucleotide-functionalized gold surfaces or nanostructures are regularly employed analytical platforms for the development of label-free optical or electrochemical biosensors, and recently, novel detection platform designs have been increasingly considering the synergistic effect of polyvalent binding, involving the simultaneous interaction of two or several oligonucleotide strands. Considering the general lack of studies involving ternary single-stranded DNA (ssDNA) interactions, a complementary analytical workflow involving capillary gel electrophoretic (CGE) mobility shift assay, microcalorimetry and computational modeling has been deployed for the characterization of a series of free and surface-bound binary and ternary oligonucleotide interactions. As a proof of concept, the DNA analogue of MicroRNA 21 (miR21), a well-known oncogenic short MicroRNA (miRNA) sequence, has been chosen as a target molecule, simulating limiting-case scenarios involved in dual molecular recognition models exploited in affinity (bio)sensing. Novel data for the characterization of oligonucleotide interacting modules is revealed, offering a fast and complete mapping of the specific or non-specific, often competing, binary and ternary order interactions in dynamic equilibria, occurring between various free and metal surface-bound oligonucleotides.
Collapse
|
8
|
Gurung P, Gomes AR, Martins RM, Juranek SA, Alberti P, Mbang-Benet DE, Urbach S, Gazanion E, Guitard V, Paeschke K, Lopez-Rubio JJ. PfGBP2 is a novel G-quadruplex binding protein in Plasmodium falciparum. Cell Microbiol 2021; 23:e13303. [PMID: 33340385 DOI: 10.1111/cmi.13303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/27/2022]
Abstract
Guanine-quadruplexes (G4s) are non-canonical DNA structures that can regulate key biological processes such as transcription, replication and telomere maintenance in several organisms including eukaryotes, prokaryotes and viruses. Recent reports have identified the presence of G4s within the AT-rich genome of Plasmodium falciparum, the protozoan parasite causing malaria. In Plasmodium, potential G4-forming sequences (G4FS) are enriched in the telomeric and sub-telomeric regions of the genome where they are associated with telomere maintenance and recombination events within virulence genes. However, there is a little understanding about the biological role of G4s and G4-binding proteins. Here, we provide the first snapshot of G4-interactome in P. falciparum using DNA pull-down assay followed by LC-MS/MS. Interestingly, we identified ~24 potential G4-binding proteins (G4-BP) that bind to a stable G4FS (AP2_G4). Furthermore, we characterised the role of G-strand binding protein 2 (PfGBP2), a putative telomere-binding protein in P. falciparum. We validated the interaction of PfGBP2 with G4 in vitro as well as in vivo. PfGBP2 is expressed throughout the intra-erythrocytic developmental cycle and is essential for the parasites in the presence of G4-stabilising ligand, pyridostatin. Gene knockout studies showed the role of PfGBP2 in the expression of var genes. Taken together, this study suggests that PfGBP2 is a bona fide G4-binding protein, which is likely to be involved in the regulation of G4-related functions in these malarial parasites. In addition, this study sheds light on this understudied G4 biology in P. falciparum.
Collapse
Affiliation(s)
- Pratima Gurung
- LPHI, UMR 5235, CNRS, INSERM, University of Montpellier, Montpellier, France.,Laboratory of Parasitology and Mycology, CNRS UMR 5290 MIVEGEC, University of Montpellier, Montpellier, France
| | - Ana Rita Gomes
- LPHI, UMR 5235, CNRS, INSERM, University of Montpellier, Montpellier, France.,Laboratory of Parasitology and Mycology, CNRS UMR 5290 MIVEGEC, University of Montpellier, Montpellier, France
| | - Rafael M Martins
- LPHI, UMR 5235, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Stefan A Juranek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Patrizia Alberti
- Laboratory Genome Structure and Instability, Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U 1154, Paris, France
| | - Diane-Ethna Mbang-Benet
- LPHI, UMR 5235, CNRS, INSERM, University of Montpellier, Montpellier, France.,Laboratory of Parasitology and Mycology, CNRS UMR 5290 MIVEGEC, University of Montpellier, Montpellier, France
| | - Serge Urbach
- BioCampus Montpellier, CNRS UMR 5203, IGF, Montpellier, France
| | - Elodie Gazanion
- Laboratory of Parasitology and Mycology, CNRS UMR 5290 MIVEGEC, University of Montpellier, Montpellier, France
| | - Vincent Guitard
- LPHI, UMR 5235, CNRS, INSERM, University of Montpellier, Montpellier, France.,Laboratory of Parasitology and Mycology, CNRS UMR 5290 MIVEGEC, University of Montpellier, Montpellier, France
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Jose-Juan Lopez-Rubio
- LPHI, UMR 5235, CNRS, INSERM, University of Montpellier, Montpellier, France.,Laboratory of Parasitology and Mycology, CNRS UMR 5290 MIVEGEC, University of Montpellier, Montpellier, France
| |
Collapse
|
9
|
Chaudhuri R, Bhattacharya S, Dash J, Bhattacharya S. Recent Update on Targeting c-MYC G-Quadruplexes by Small Molecules for Anticancer Therapeutics. J Med Chem 2020; 64:42-70. [PMID: 33355454 DOI: 10.1021/acs.jmedchem.0c01145] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Guanine-rich DNA sequences have the propensity to adopt four-stranded tetrahelical G-quadruplex (G4) structures that are overrepresented in gene promoters. The structural polymorphism and physicochemical properties of these non-Watson-Crick G4 structures make them important targets for drug development. The guanine-rich nuclease hypersensitivity element III1 present in the upstream of P1 promoter of c-MYC oncogene has the ability to form an intramolecular parallel G4 structure. The G4 structure that forms transiently in the c-MYC promoter functions as a transcriptional repressor element. The c-MYC oncogene is overexpressed in a wide variety of cancers and plays a key role in cancer progression. Till now, a large number of compounds that are capable of interacting and stabilizing thec-MYC G4 have been reported. In this review, we summarize various c-MYC G4 specific molecules and discuss their effects on c-MYC gene expression in vitro and in vivo.
Collapse
Affiliation(s)
- Ritapa Chaudhuri
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Semantee Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.,Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Human MYC G-quadruplex: From discovery to a cancer therapeutic target. Biochim Biophys Acta Rev Cancer 2020; 1874:188410. [PMID: 32827579 DOI: 10.1016/j.bbcan.2020.188410] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Overexpression of the MYC oncogene is a molecular hallmark of both cancer initiation and progression. Targeting MYC is a logical and effective cancer therapeutic strategy. A special DNA secondary structure, the G-quadruplex (G4), is formed within the nuclease hypersensitivity element III1 (NHE III1) region, located upstream of the MYC gene's P1 promoter that drives the majority of its transcription. Targeting such G4 structures has been a focus of anticancer therapies in recent decades. Thus, a comprehensive review of the MYC G4 structure and its role as a potential therapeutic target is timely. In this review, we first outline the discovery of the MYC G4 structure and evidence of its formation in vitro and in cells. Then, we describe the functional role of G4 in regulating MYC gene expression. We also summarize three types of MYC G4-interacting proteins that can promote, stabilize and unwind G4 structures. Finally, we discuss G4-binding molecules and the anticancer activities of G4-stabilizing ligands, including small molecular compounds and peptides, and assess their potential as novel anticancer therapeutics.
Collapse
|