1
|
Sullivan MV, Allabush F, Mendes PM, Tucker JHR, Turner NW. Incorporation of polymerizable linkers into aptamers for high-affinity nanoscale molecularly imprinted polymer hybrids: analysis of positional selectivity. J Mater Chem B 2025; 13:4374-4385. [PMID: 40079680 PMCID: PMC11905881 DOI: 10.1039/d4tb02475c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Aptamers are short single strand nucleic acid sequences that exhibit high-affinity molecular recognition towards non nucleic acid targets. They offer many benefits over antibodies, but still suffer from variable affinities and stability issues. Recently, aptamers have been incorporated as functional recognition agents into molecularly imprinted polymers, a competing recognition technology, to create hybrid materials, AptaMIPs, that exhibit the benefits of both classes. Specifically, this process can increase target affinity while preventing aptamer degradation. For the first time, using a lysozyme aptamer as an exemplar, we have undertaken a systematic and fundamental study to identify the optimal number and location of polymer connection points on an aptameric sequence for boosting AptaMIP target affinity and selectivity creating high affinity recognition elements. Clear patterns have emerged showing "fixing" throughout the molecule is required, but only in particular regions of the sequence. The results suggest that conformationally flexible regions within the polymer-bound aptameric sequence are detrimental to strong target binding, supporting the hypothesis that a successful imprinting process must lock the aptamer into its ideal binding conformation to achieve observable marked improvement in recognition. Conversely, too much flexibility in the embedded oligo (demonstrated through limited binding points) leads to poor performance. These findings offer a clear direction for development of aptamer-polymer hybrids. We also demonstrate the effectiveness of the developed materials in sensitive detection of the template using surface plasmon resonance, through improved quality of the recognition element.
Collapse
Affiliation(s)
- Mark V Sullivan
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - Francia Allabush
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paula M Mendes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nicholas W Turner
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
2
|
Sullivan MV, Fletcher C, Armitage R, Blackburn C, Turner NW. A rapid synthesis of molecularly imprinted polymer nanoparticles for the extraction of performance enhancing drugs (PIEDs). NANOSCALE ADVANCES 2023; 5:5352-5360. [PMID: 37767033 PMCID: PMC10521259 DOI: 10.1039/d3na00422h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023]
Abstract
It is becoming increasingly more significant to detect and separate hormones from water sources, with the development of synthetic recognition materials becoming an emerging field. The delicate nature of biological recognition materials such as the antibodies means the generation of robust viable synthetic alternatives has become a necessity. Molecularly imprinted nanoparticles (NanoMIPs) are an exciting class that has shown promise due the generation of high-affinity and specific materials. While nanoMIPs offer high affinity, robustness and reusability, their production can be tricky and laborious. Here we have developed a simple and rapid microwaveable suspension polymerisation technique to produce nanoMIPs for two related classes of drug targets, Selective Androgen Receptor Modulators (SARMs) and steroids. These nanoMIPs were produced using one-pot microwave synthesis with methacrylic acid (MAA) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as a suitable cross-linker, producing particles of an approximate range of 120-140 nm. With the SARMs-based nanoMIPs being able to rebind 94.08 and 94.46% of their target molecules (andarine, and RAD-140, respectively), while the steroidal-based nanoMIPs were able to rebind 96.62 and 96.80% of their target molecules (estradiol and testosterone, respectively). The affinity of nanoMIPs were investigated using Scatchard analysis, with Ka values of 6.60 × 106, 1.51 × 107, 1.04 × 107 and 1.51 × 107 M-1, for the binding of andarine, RAD-140, estradiol and testosterone, respectively. While the non-imprinted control polymer (NIP) shows a decrease in affinity with Ka values of 3.40 × 104, 1.01 × 104, 1.83 × 104, and 4.00 × 104 M-1, respectively. The nanoMIPs also demonstrated good selectivity and specificity of binding the targets from a complex matrix of river water, showing these functional materials offer multiple uses for trace compound analysis and/or sample clean-up.
Collapse
Affiliation(s)
- Mark V Sullivan
- Department of Chemistry, Dainton Building, University of Sheffield Brook Hill Sheffield S3 7HF UK
- Leicester School of Pharmacy, De Montfort University The Gateway Leicester LE1 9BH UK
| | - Connor Fletcher
- Leicester School of Pharmacy, De Montfort University The Gateway Leicester LE1 9BH UK
| | - Rachel Armitage
- Leicester School of Pharmacy, De Montfort University The Gateway Leicester LE1 9BH UK
| | - Chester Blackburn
- Department of Chemistry, Dainton Building, University of Sheffield Brook Hill Sheffield S3 7HF UK
- Leicester School of Pharmacy, De Montfort University The Gateway Leicester LE1 9BH UK
| | - Nicholas W Turner
- Department of Chemistry, Dainton Building, University of Sheffield Brook Hill Sheffield S3 7HF UK
- Leicester School of Pharmacy, De Montfort University The Gateway Leicester LE1 9BH UK
| |
Collapse
|
3
|
El-Sharif HF, Turner NW, Reddy SM, Sullivan MV. Application of thymine-based nucleobase-modified acrylamide as a functional co-monomer in electropolymerised thin-film molecularly imprinted polymer (MIP) for selective protein (haemoglobin) binding. Talanta 2021; 240:123158. [PMID: 34952354 DOI: 10.1016/j.talanta.2021.123158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/20/2022]
Abstract
Molecularly imprinted polymers (MIPs) are fast becoming alternatives to biological recognition materials, offering robustness and the ability to work in extreme environments. Here, a modified thymine-based nucleobase, with acrylamide at the 5-postion (AA-dT) was used as a co-monomer in the synthesis of a thin-film electropolymerised MIP system for the molecular recognition of the protein haemoglobin. The AA-dT co-monomer incorporated into a N-hydroxymethylacrylamide (NHMAm) MIP offered a two-fold superior binding affinity of the NHMAm only MIP, with KD values of 0.72 μM and 1.67 μM, respectively. A unique AA-dT:NHMAm MIP bilayer was created in an attempt to increase the amount AA-dT incorporated into the film, and this obtained a respectable KD value of 7.03 μM. All MIPs produced excellent selectivity for the target protein and when applied to a sensor platform (Surface Plasma Resonance), the limit of detection for the MIPs is in the nM range (3.87, 3.47, and 3.87 nM, for the NHMAm MIP, AA-dT:NHMAm MIP, and AA-dT:NHMAm MIP bilayer, respectively). The introduction of the modified thymine-based nucleobase offers a promising strategy for improving the properties of a MIP, allowing these MIPs to potentially be a highly robust and selective material for molecular recognition.
Collapse
Affiliation(s)
- Hazim F El-Sharif
- Department of Chemistry, School of Natural Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - Nicholas W Turner
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Subrayal M Reddy
- Department of Chemistry, School of Natural Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom.
| | - Mark V Sullivan
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom.
| |
Collapse
|
4
|
Norman RL, Singh R, Muskett FW, Parrott EL, Rufini A, Langridge JI, Runau F, Dennison A, Shaw JA, Piletska E, Canfarotta F, Ng LL, Piletsky S, Jones DJL. Mass spectrometric detection of KRAS protein mutations using molecular imprinting. NANOSCALE 2021; 13:20401-20411. [PMID: 34854867 PMCID: PMC8675027 DOI: 10.1039/d1nr03180e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/27/2021] [Indexed: 05/07/2023]
Abstract
Cancer is a disease of cellular evolution where single base changes in the genetic code can have significant impact on the translation of proteins and their activity. Thus, in cancer research there is significant interest in methods that can determine mutations and identify the significant binding sites (epitopes) of antibodies to proteins in order to develop novel therapies. Nano molecularly imprinted polymers (nanoMIPs) provide an alternative to antibodies as reagents capable of specifically capturing target molecules depending on their structure. In this study, we used nanoMIPs to capture KRAS, a critical oncogene, to identify mutations which when present are indicative of oncological progress. Herein, coupling nanoMIPs (capture) and liquid chromatography-mass spectrometry (detection), LC-MS has allowed us to investigate mutational assignment and epitope discovery. Specifically, we have shown epitope discovery by generating nanoMIPs to a recombinant KRAS protein and identifying three regions of the protein which have been previously assigned as epitopes using much more time-consuming protocols. The mutation status of the released tryptic peptide was identified by LC-MS following capture of the conserved region of KRAS using nanoMIPS, which were tryptically digested, thus releasing the sequence of a non-conserved (mutated) region. This approach was tested in cell lines where we showed the effective genotyping of a KRAS cell line and in the plasma of cancer patients, thus demonstrating its ability to diagnose precisely the mutational status of a patient. This work provides a clear line-of-sight for the use of nanoMIPs to its translation from research into diagnostic and clinical utility.
Collapse
Affiliation(s)
- Rachel L Norman
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Rajinder Singh
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Frederick W Muskett
- Department of Molecular and Cell Biology, University of Leicester, LE1 7RH Leicester, UK
- Leicester Institute of Structural and Chemical Biology, University of Leicester, LE1 7RH Leicester, UK
| | - Emma L Parrott
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Alessandro Rufini
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | | | - Franscois Runau
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Ashley Dennison
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Jacqui A Shaw
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
| | - Elena Piletska
- MIP Diagnostics, The Exchange Building, Colworth Park, MK44 1LQ, Bedford, UK
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE1 7RH, UK
| | - Sergey Piletsky
- MIP Diagnostics, The Exchange Building, Colworth Park, MK44 1LQ, Bedford, UK
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Donald J L Jones
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, LE1 5WW, UK.
- Department of Cardiovascular Sciences, University of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE1 7RH, UK
| |
Collapse
|
5
|
Sullivan MV, Dennison SR, Hayes JM, Reddy SM. Evaluation of acrylamide-based molecularly imprinted polymer thin-sheets for specific protein capture-a myoglobin model. Biomed Phys Eng Express 2021; 7. [PMID: 34107465 PMCID: PMC8212870 DOI: 10.1088/2057-1976/ac0991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022]
Abstract
We evaluate a series of thin-sheet hydrogel molecularly imprinted polymers (MIPs), using a family of acrylamide-based monomers, selective for the target protein myoglobin (Mb). The simple production of the thin-sheet MIP offers an alternative biorecognition surface that is robust, stable and uniform, and has the potential to be adapted for biosensor applications. The MIP containing the functional monomer N-hydroxymethylacrylamide (NHMAm), produced optimal specific rebinding of the target protein (Mb) with 84.9% (± 0.7) rebinding and imprinting and selectivity factors of 1.41 and 1.55, respectively. The least optimal performing MIP contained the functional monomer N,N-dimethylacrylamide (DMAm) with 67.5% (± 0.7) rebinding and imprinting and selectivity factors of 1.11 and 1.32, respectively. Hydrogen bonding effects, within a protein-MIP complex, were investigated using computational methods and Fourier transform infrared (FTIR) spectroscopy. The quantum mechanical calculations predictions of a red shift of the monomer carbonyl peak is borne-out within FTIR spectra, with three of the MIPs, acrylamide, N-(hydroxymethyl) acrylamide, and N-(hydroxyethyl) acrylamide, showing peak downshifts of 4, 11, and 8 cm−1, respectively.
Collapse
Affiliation(s)
- Mark V Sullivan
- Dr. M. V. Sullivan and Prof. S. M. Reddy, Department of Chemistry, School of Natural Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - Sarah R Dennison
- Dr. S. R. Dennison and Dr. J. M. Hayes, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - Joseph M Hayes
- Dr. S. R. Dennison and Dr. J. M. Hayes, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - Subrayal M Reddy
- Dr. M. V. Sullivan and Prof. S. M. Reddy, Department of Chemistry, School of Natural Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| |
Collapse
|
6
|
Sullivan MV, Allabush F, Bunka D, Tolley A, Mendes PM, Tucker JHR, Turner NW. Hybrid aptamer-molecularly imprinted polymer (AptaMIP) nanoparticles selective for the antibiotic moxifloxacin. Polym Chem 2021. [DOI: 10.1039/d1py00607j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A polymerisable aptamer incorporated into Molecularly Imprinted Polymer nanoparticles (MIPs) creates a hybrid “best-of-both-worlds” approach which outperforms individual constituent components.
Collapse
Affiliation(s)
| | - Francia Allabush
- School of Chemical Engineering
- University of Birmingham
- Birmingham
- UK
- School of Chemistry
| | - David Bunka
- The Aptamer Group
- Second Floor
- Bio Centre
- York
- UK
| | | | - Paula M. Mendes
- School of Chemical Engineering
- University of Birmingham
- Birmingham
- UK
| | | | | |
Collapse
|