1
|
Intracellular Injection of Brain Extracts from Alzheimer's Disease Patients Triggers Unregulated Ca 2+ Release from Intracellular Stores That Hinders Cellular Bioenergetics. Cells 2022; 11:cells11223630. [PMID: 36429057 PMCID: PMC9688564 DOI: 10.3390/cells11223630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Strong evidence indicates that amyloid beta (Aβ) inflicts its toxicity in Alzheimer's disease (AD) by promoting uncontrolled elevation of cytosolic Ca2+ in neurons. We have previously shown that synthetic Aβ42 oligomers stimulate abnormal intracellular Ca2+ release from the endoplasmic reticulum stores, suggesting that a similar mechanism of Ca2+ toxicity may be common to the endogenous Aβs oligomers. Here, we use human postmortem brain extracts from AD-affected patients and test their ability to trigger Ca2+ fluxes when injected intracellularly into Xenopus oocytes. Immunological characterization of the samples revealed the elevated content of soluble Aβ oligomers only in samples from AD patients. Intracellular injection of brain extracts from control patients failed to trigger detectable changes in intracellular Ca2+. Conversely, brain extracts from AD patients triggered Ca2+ events consisting of local and global Ca2+ fluorescent transients. Pre-incubation with either the conformation-specific OC antiserum or caffeine completely suppressed the brain extract's ability to trigger cytosolic Ca2+ events. Computational modeling suggests that these Ca2+ fluxes may impair cells bioenergetic by affecting ATP and ROS production. These results support the hypothesis that Aβ oligomers contained in neurons of AD-affected brains may represent the toxic agents responsible for neuronal malfunctioning and death associated with the disruption of Ca2+ homeostasis.
Collapse
|
2
|
Eom S, Jung W, Lee J, Yeom HD, Lee S, Kim C, Park HD, Lee JH. Differential Regulation of Human Serotonin Receptor Type 3A by Chanoclavine and Ergonovine. Molecules 2021; 26:molecules26051211. [PMID: 33668306 PMCID: PMC7956620 DOI: 10.3390/molecules26051211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic disease that causes abdominal pain and an imbalance of defecation patterns due to gastrointestinal dysfunction. The cause of IBS remains unclear, but intestinal-brain axis problems and neurotransmitters have been suggested as factors. In this study, chanoclavine, which has a ring structure similar to 5-hydroxytryptamine (5-HT), showed an interaction with the 5-HT3A receptor to regulate IBS. Although its derivatives are known to be involved in neurotransmitter receptors, the molecular physiological mechanism of the interaction between chanoclavine and the 5-HT3A receptor is unknown. Electrophysiological experiments were conducted using a two-electrode voltage-clamp analysis to observe the inhibitory effects of chanoclavine on Xenopus oocytes in which the h5-HT3A receptor was expressed. The co-application of chanoclavine and 5-HT resulted in concentration-dependent, reversible, voltage-independent, and competitive inhibition. The 5-HT3A response induced by 5-HT was blocked by chanoclavine with half-maximal inhibitory response concentration (IC50) values of 107.2 µM. Docking studies suggested that chanoclavine was positioned close F130 and N138 in the 5-HT3A receptor-binding site. The double mutation of F130A and N138A significantly attenuated the interaction of chanoclavine compared to a single mutation or the wild type. These data suggest that F130 and N138 are important sites for ligand binding and activity. Chanoclavine and ergonovine have different effects. Asparagine, the 130th amino acid sequence of the 5-HT3A receptor, and phenylalanine, the 138th, are important in the role of binding chanoclavine, but ergonovine has no interaction with any amino acid sequence of the 5-HT3A receptor. The results of the electrophysiological studies and of in silico simulation showed that chanoclavine has the potential to inhibit the hypergastric stimulation of the gut by inhibiting the stimulation of signal transduction through 5-HT3A receptor stimulation. These findings suggest chanoclavine as a potential antiemetic agent for excessive gut stimulation and offer insight into the mechanisms of 5-HT3A receptor inhibition.
Collapse
Affiliation(s)
- Sanung Eom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (J.L.); (S.L.); (C.K.)
| | - Woog Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Jaeeun Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (J.L.); (S.L.); (C.K.)
| | | | - Shinhui Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (J.L.); (S.L.); (C.K.)
| | - Chaelin Kim
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (J.L.); (S.L.); (C.K.)
| | - Heui-Dong Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: (H.-D.P.); (J.H.L); Tel.: +82-53-950-5774 (H.-D.P.); +82-62-530-2164 (J.H.L.)
| | - Junho H. Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (J.L.); (S.L.); (C.K.)
- Correspondence: (H.-D.P.); (J.H.L); Tel.: +82-53-950-5774 (H.-D.P.); +82-62-530-2164 (J.H.L.)
| |
Collapse
|
3
|
Shah SI, Smith M, Swaminathan D, Parker I, Ullah G, Demuro A. CellSpecks: A Software for Automated Detection and Analysis of Calcium Channels in Live Cells. Biophys J 2018; 115:2141-2151. [PMID: 30447989 DOI: 10.1016/j.bpj.2018.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/27/2018] [Accepted: 10/22/2018] [Indexed: 02/01/2023] Open
Abstract
To couple the fidelity of patch-clamp recording with a more high-throughput screening capability, we pioneered a, to our knowledge, novel approach to single-channel recording that we named "optical patch clamp." By using highly sensitive fluorescent Ca2+ indicator dyes in conjunction with total internal fluorescence microscopy techniques, we monitor Ca2+ flux through individual Ca2+-permeable channels. This approach provides information about channel gating analogous to patch-clamp recording at a time resolution of ∼2 ms with the additional advantage of being massively parallel, providing simultaneous and independent recording from thousands of channels in the native environment. However, manual analysis of the data generated by this technique presents severe challenges because a video recording can include many thousands of frames. To overcome this bottleneck, we developed an image processing and analysis framework called CellSpecks capable of detecting and fully analyzing the kinetics of ion channels within a video sequence. By using randomly generated synthetic data, we tested the ability of CellSpecks to rapidly and efficiently detect and analyze the activity of thousands of ion channels, including openings for a few milliseconds. Here, we report the use of CellSpecks for the analysis of experimental data acquired by imaging muscle nicotinic acetylcholine receptors and the Alzheimer's disease-associated amyloid β pores with multiconductance levels in the plasma membrane of Xenopus laevis oocytes. We show that CellSpecks can accurately and efficiently generate location maps and create raw and processed fluorescence time traces; histograms of mean open times, mean close times, open probabilities, durations, and maximal amplitudes; and a "channel chip" showing the activity of all channels as a function of time. Although we specifically illustrate the application of CellSpecks for analyzing data from Ca2+ channels, it can be easily customized to analyze other spatially and temporally localized signals.
Collapse
Affiliation(s)
| | | | - Divya Swaminathan
- Department of Neurobiology and Behavior,University of California Irvine, Irvine, California
| | - Ian Parker
- Department of Neurobiology and Behavior,University of California Irvine, Irvine, California; Department of Physiology and Biophysics, University of California Irvine, Irvine, California
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, Florida.
| | - Angelo Demuro
- Department of Neurobiology and Behavior,University of California Irvine, Irvine, California.
| |
Collapse
|
4
|
Abstract
The oocytes of the African clawed frog (Xenopus laevis) comprise one of the most widely used membrane protein expression systems. While frequently used for studies of transporters and ion channels, the application of this system to the study of mechanosensitive ion channels has been overlooked, perhaps due to a relative abundance of native expression systems. Recent advances, however, have illustrated the advantages of the oocyte system for studying plant and bacterial mechanosensitive channels. Here we describe in detail the methods used for heterologous expression and characterization of bacterial and plant mechanosensitive channels in Xenopus oocytes.
Collapse
Affiliation(s)
- Grigory Maksaev
- Department of Biology, Washington University in Saint Louis, One Brookings Drive, Mail Code 1137, Saint Louis, MO, 63130, USA
| | | |
Collapse
|
5
|
Lin-Moshier Y, Marchant JS. Nuclear microinjection to assess how heterologously expressed proteins impact Ca2+ signals in Xenopus oocytes. Cold Spring Harb Protoc 2013; 2013:2013/3/pdb.prot072785. [PMID: 23457340 DOI: 10.1101/pdb.prot072785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Xenopus oocyte is frequently used for heterologous expression and for studying the spatiotemporal patterning of Ca(2+) signals. Here, we outline a protocol for nuclear microinjection of the Xenopus oocyte for the purpose of studying how subsequently expressed proteins impact intracellular Ca(2+) signals evoked by inositol trisphosphate (InsP3). Injected oocytes can easily be identified by reporter technologies and the impact of heterologously expressed proteins on the generation and properties of InsP3-evoked Ca(2+) signals can be resolved using caged InsP3 and fluorescent Ca(2+) indicators.
Collapse
Affiliation(s)
- Yaping Lin-Moshier
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
6
|
Nader N, Kulkarni RP, Dib M, Machaca K. How to make a good egg!: The need for remodeling of oocyte Ca(2+) signaling to mediate the egg-to-embryo transition. Cell Calcium 2012; 53:41-54. [PMID: 23266324 DOI: 10.1016/j.ceca.2012.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022]
Abstract
The egg-to-embryo transition marks the initiation of multicellular organismal development and is mediated by a specialized Ca(2+) transient at fertilization. This explosive Ca(2+) signal has captured the interest and imagination of scientists for many decades, given its cataclysmic nature and necessity for the egg-to-embryo transition. Learning how the egg acquires the competency to generate this Ca(2+) transient at fertilization is essential to our understanding of the mechanisms controlling egg and the transition to embryogenesis. In this review we discuss our current knowledge of how Ca(2+) signaling pathways remodel during oocyte maturation in preparation for fertilization with a special emphasis on the frog oocyte as additional reviews in this issue will touch on this in other species.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Qatar
| | | | | | | |
Collapse
|
7
|
Abstract
All cells use changes in intracellular calcium concentration ([Ca(2+)](i)) to regulate cell signalling events. In neurons, with their elaborate dendritic and axonal arborizations, there are clear examples of both localized and widespread Ca(2+) signals. [Ca(2+)](i) changes that are generated by Ca(2+) entry through voltage- and ligand-gated channels are the best characterized. In addition, the release of Ca(2+) from intracellular stores can result in increased [Ca(2+)](i); the signals that trigger this release have been less well-studied, in part because they are not usually associated with specific changes in membrane potential. However, recent experiments have revealed dramatic widespread Ca(2+) waves and localized spark-like events, particularly in dendrites. Here we review emerging data on the nature of these signals and their functions.
Collapse
|
8
|
Marin M. Calcium Signaling in Xenopus oocyte. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1073-94. [DOI: 10.1007/978-94-007-2888-2_49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Smith IF, Wiltgen SM, Shuai J, Parker I. Ca(2+) puffs originate from preestablished stable clusters of inositol trisphosphate receptors. Sci Signal 2009; 2:ra77. [PMID: 19934435 PMCID: PMC2897231 DOI: 10.1126/scisignal.2000466] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intracellular calcium ion (Ca(2+)) signaling crucially depends on the clustered organization of inositol trisphosphate receptors (IP(3)Rs) in the endoplasmic reticulum (ER) membrane. These ligand-gated ion channels liberate Ca(2+) to generate local signals known as Ca(2+) puffs. We tested the hypothesis that IP(3) itself elicits rapid clustering of IP(3)Rs by using flash photolysis of caged IP(3) in conjunction with high-resolution Ca(2+) imaging to monitor the activity and localization of individual IP(3)Rs within intact mammalian cells. Our results indicate that Ca(2+) puffs arising with latencies as short as 100 to 200 ms after photorelease of IP(3) already involve at least four IP(3)R channels, and that this number does not subsequently grow. Moreover, single active IP(3)Rs show limited mobility, and stochastic simulations suggest that aggregation of IP(3)Rs at puff sites by a diffusional trapping mechanism would require many seconds. We thus conclude that puff sites represent preestablished, stable clusters of IP(3)Rs and that functional IP(3)Rs are not readily diffusible within the ER membrane.
Collapse
Affiliation(s)
- Ian F Smith
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA.
| | | | | | | |
Collapse
|
10
|
Weinl S, Kudla J. The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives. THE NEW PHYTOLOGIST 2009; 184:517-528. [PMID: 19860013 DOI: 10.1111/j.1469-8137.2009.02938.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Calcium serves as a versatile messenger in many adaptation and developmental processes in plants. Cellular calcium signals are detected and transmitted by calcium-binding proteins functioning as sensor molecules. The family of calcineurin B-like (CBL) proteins represents a unique group of calcium sensors and contributes to the decoding of calcium transients by interacting with and regulating the family of CBL-interacting protein kinases (CIPKs). In higher plants, CBL proteins and CIPKs form a complex signaling network that allows for flexible but specific signal-response coupling during environmental adaptation reactions. This review presents novel findings concerning the evolution of this signaling network and key insights into the physiological function of CBL-CIPK complexes. These aspects will be presented and discussed in the context of emerging functional principles governing efficient and specific information processing in this signaling system.
Collapse
Affiliation(s)
- Stefan Weinl
- Universität Münster, Institut für Botanik und Botanischer Garten, Schlossplatz 4, 48149 Münster, Germany
| | - Jörg Kudla
- Universität Münster, Institut für Botanik und Botanischer Garten, Schlossplatz 4, 48149 Münster, Germany
| |
Collapse
|
11
|
Gargus JJ. Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine, and autism. Ann N Y Acad Sci 2009; 1151:133-56. [PMID: 19154521 DOI: 10.1111/j.1749-6632.2008.03572.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The calcium ion is one of the most versatile, ancient, and universal of biological signaling molecules, known to regulate physiological systems at every level from membrane potential and ion transporters to kinases and transcription factors. Disruptions of intracellular calcium homeostasis underlie a host of emerging diseases, the calciumopathies. Cytosolic calcium signals originate either as extracellular calcium enters through plasma membrane ion channels or from the release of an intracellular store in the endoplasmic reticulum (ER) via inositol triphosphate receptor and ryanodine receptor channels. Therefore, to a large extent, calciumopathies represent a subset of the channelopathies, but include regulatory pathways and the mitochondria, the major intracellular calcium repository that dynamically participates with the ER stores in calcium signaling, thereby integrating cellular energy metabolism into these pathways, a process of emerging importance in the analysis of the neurodegenerative and neuropsychiatric diseases. Many of the calciumopathies are common complex polygenic diseases, but leads to their understanding come most prominently from rare monogenic channelopathy paradigms. Monogenic forms of common neuronal disease phenotypes-such as seizures, ataxia, and migraine-produce a constitutionally hyperexcitable tissue that is susceptible to periodic decompensations. The gene families and genetic lesions underlying familial hemiplegic migraine, FHM1/CACNA1A, FHM2/ATP1A2, and FHM3/SCN1A, and monogenic mitochondrial migraine syndromes, provide a robust platform from which genes, such as CACNA1C, which encodes the calcium channel mutated in Timothy syndrome, can be evaluated for their role in autism and bipolar disease.
Collapse
Affiliation(s)
- J Jay Gargus
- Department of Physiology & Biophysics, Section of Human Genetics, School of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
12
|
Smith IF, Wiltgen SM, Parker I. Localization of puff sites adjacent to the plasma membrane: functional and spatial characterization of Ca2+ signaling in SH-SY5Y cells utilizing membrane-permeant caged IP3. Cell Calcium 2009; 45:65-76. [PMID: 18639334 PMCID: PMC2666303 DOI: 10.1016/j.ceca.2008.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 05/30/2008] [Accepted: 06/05/2008] [Indexed: 01/14/2023]
Abstract
The Xenopus oocyte has been a favored model system in which to study spatio-temporal mechanisms of intracellular Ca2+ dynamics, in large part because this giant cell facilitates intracellular injections of Ca2+ indicator dyes, buffers and caged compounds. However, the recent commercial availability of membrane-permeant ester forms of caged IP3 (ci-IP3) and EGTA, now allows for facile loading of these compounds into smaller mammalian cells, permitting control of [IP3]i and cytosolic Ca2+ buffering. Here, we establish the human neuroblastoma SH-SY5Y cell line as an advantageous experimental system for imaging Ca2+ signaling, and characterize IP3-mediated Ca2+ signaling mechanisms in these cells. Flash photo-release of increasing amounts of i-IP3 evokes Ca2+ puffs that transition to waves, but intracellular loading of EGTA decouples release sites, allowing discrete puffs to be studied over a wide range of [IP3]. Puff activity persists for minutes following a single photo-release, pointing to a slow rate of i-IP3 turnover in these cells and suggesting that repetitive Ca2+ spikes with periods of 20-30s are not driven by oscillations in [IP3]. Puff amplitudes are independent of [IP3], whereas their frequencies increase with increasing photo-release. Puff sites in SH-SY5Y cells are not preferentially localized near the nucleus, but instead are concentrated close to the plasma membrane where they can be visualized by total internal reflection microscopy, offering the potential for unprecedented spatio-temporal resolution of Ca2+ puff kinetics.
Collapse
Affiliation(s)
- Ian F Smith
- Department of Neurobiology and Behavior, University of California, 1146 McGaugh Hall, Irvine, CA 92697-4545, United States.
| | | | | |
Collapse
|
13
|
Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD. The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 2008; 456:116-20. [PMID: 18820677 PMCID: PMC2597643 DOI: 10.1038/nature07338] [Citation(s) in RCA: 299] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 08/15/2008] [Indexed: 12/17/2022]
Abstract
Ca(2+)-release-activated Ca(2+) (CRAC) channels underlie sustained Ca(2+) signalling in lymphocytes and numerous other cells after Ca(2+) liberation from the endoplasmic reticulum (ER). RNA interference screening approaches identified two proteins, Stim and Orai, that together form the molecular basis for CRAC channel activity. Stim senses depletion of the ER Ca(2+) store and physically relays this information by translocating from the ER to junctions adjacent to the plasma membrane, and Orai embodies the pore of the plasma membrane calcium channel. A close interaction between Stim and Orai, identified by co-immunoprecipitation and by Förster resonance energy transfer, is involved in the opening of the Ca(2+) channel formed by Orai subunits. Most ion channels are multimers of pore-forming subunits surrounding a central channel, which are preassembled in the ER and transported in their final stoichiometry to the plasma membrane. Here we show, by biochemical analysis after cross-linking in cell lysates and intact cells and by using non-denaturing gel electrophoresis without cross-linking, that Orai is predominantly a dimer in the plasma membrane under resting conditions. Moreover, single-molecule imaging of green fluorescent protein (GFP)-tagged Orai expressed in Xenopus oocytes showed predominantly two-step photobleaching, again consistent with a dimeric basal state. In contrast, co-expression of GFP-tagged Orai with the carboxy terminus of Stim as a cytosolic protein to activate the Orai channel without inducing Ca(2+) store depletion or clustering of Orai into punctae yielded mostly four-step photobleaching, consistent with a tetrameric stoichiometry of the active Orai channel. Interaction with the C terminus of Stim thus induces Orai dimers to dimerize, forming tetramers that constitute the Ca(2+)-selective pore. This represents a new mechanism in which assembly and activation of the functional ion channel are mediated by the same triggering molecule.
Collapse
Affiliation(s)
- Aubin Penna
- Department of Physiology and Biophysics, University of California Irvine, California 92697-4561, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
VanHouten JN, Wysolmerski JJ. Transcellular calcium transport in mammary epithelial cells. J Mammary Gland Biol Neoplasia 2007; 12:223-35. [PMID: 17999165 DOI: 10.1007/s10911-007-9057-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022] Open
Abstract
The time-honored paradigm for mammary gland transepithelial calcium transport into milk is centered on the view that most, if not all, calcium enters milk through the secretory pathway, and no ionic calcium directly crosses the apical plasma membrane. Data from several recent studies all strongly suggest that most calcium, in fact, is extruded across the apical plasma membrane directly by the plasma membrane calcium-ATPase isoform 2 (PMCA2). In this review we break down transcellular calcium transport into the tasks of calcium entry, calcium sequestration and compartmentalization, and calcium extrusion. We compare and contrast the steps of calcium transport into milk by mammary epithelial cells, and the specific molecules that might perform these tasks, with well-characterized calcium transport mechanisms in other epithelia, such as the kidney, small intestine, and salivary gland. Finally, we suggest an updated model for calcium transport into milk that incorporates calcium transport across the apical plasma membrane.
Collapse
Affiliation(s)
- Joshua N VanHouten
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, New Haven, CT 06520-8020, USA.
| | | |
Collapse
|