Curtis EA, Liu DR. Discovery of widespread GTP-binding motifs in genomic DNA and RNA.
ACTA ACUST UNITED AC 2013;
20:521-32. [PMID:
23601641 DOI:
10.1016/j.chembiol.2013.02.015]
[Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/22/2013] [Accepted: 02/25/2013] [Indexed: 12/20/2022]
Abstract
Biological RNAs that bind small molecules have been implicated in a variety of regulatory and catalytic processes. Inspired by these examples, we used in vitro selection to search a pool of genome-encoded RNA fragments for naturally occurring GTP aptamers. Several aptamer classes were identified, including one (the "G motif") with a G-quadruplex structure. Further analysis revealed that most RNA and DNA G-quadruplexes bind GTP. The G motif is abundant in eukaryotes, and the human genome contains ~75,000 examples with dissociation constants comparable to the GTP concentration of a eukaryotic cell (~300 μM). G-quadruplexes play roles in diverse cellular processes, and our findings raise the possibility that GTP may play a role in the function of these elements. Consistent with this possibility, the sequence requirements of several classes of regulatory G-quadruplexes parallel those of GTP binding.
Collapse