1
|
Wang Y, Feng G, Huang Y. The Schizosaccharomyces pombe DEAD-box protein Mss116 is required for mitoribosome assembly and mitochondrial translation. Mitochondrion 2024; 76:101881. [PMID: 38604460 DOI: 10.1016/j.mito.2024.101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
DEAD-box helicases are important players in mitochondrial gene expression, which is necessary for mitochondrial respiration. In this study, we characterized Schizosaccharomyces pombe Mss116 (spMss116), a member of the family of DEAD-box RNA helicases. Deletion of spmss116 in a mitochondrial intron-containing background significantly reduced the levels of mitochondrial DNA (mtDNA)-encoded cox1 and cob1 mRNAs and impaired mitochondrial translation, leading to a severe respiratory defect and a loss of cell viability during stationary phase. Deletion of mitochondrial introns restored the levels of cox1 and cob1 mRNAs to wide-type (WT) levels but could not restore mitochondrial translation and respiration in Δspmss116 cells. Furthermore, deletion of spmss116 in both mitochondrial intron-containing and intronless backgrounds impaired mitoribosome assembly and destabilization of mitoribosomal proteins. Our findings suggest that defective mitochondrial translation caused by deletion of spmss116 is most likely due to impaired mitoribosome assembly.
Collapse
Affiliation(s)
- Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Gang Feng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
2
|
Porat J, Vakiloroayaei A, Remnant BM, Talebi M, Cargill T, Bayfield MA. Crosstalk between the tRNA methyltransferase Trm1 and RNA chaperone La influences eukaryotic tRNA maturation. J Biol Chem 2023; 299:105326. [PMID: 37805140 PMCID: PMC10652106 DOI: 10.1016/j.jbc.2023.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023] Open
Abstract
tRNAs undergo an extensive maturation process involving posttranscriptional modifications often associated with tRNA structural stability and promoting the native fold. Impaired posttranscriptional modification has been linked to human disease, likely through defects in translation, mitochondrial function, and increased susceptibility to degradation by various tRNA decay pathways. More recently, evidence has emerged that bacterial tRNA modification enzymes can act as tRNA chaperones to guide tRNA folding in a manner independent from catalytic activity. Here, we provide evidence that the fission yeast tRNA methyltransferase Trm1, which dimethylates nuclear- and mitochondrial-encoded tRNAs at G26, can also promote tRNA functionality in the absence of catalysis. We show that WT and catalytic-dead Trm1 are active in an in vivo tRNA-mediated suppression assay and possess RNA strand annealing and dissociation activity in vitro, similar to previously characterized RNA chaperones. Trm1 and the RNA chaperone La have previously been proposed to function synergistically in promoting tRNA maturation, yet we surprisingly demonstrate that La binding to nascent pre-tRNAs decreases Trm1 tRNA dimethylation in vivo and in vitro. Collectively, these results support the hypothesis for tRNA modification enzymes that combine catalytic and noncatalytic activities to promote tRNA maturation, as well as expand our understanding of how La function can influence tRNA modification.
Collapse
|
3
|
Wang Y, Luo Y, Huang Y. Schizosaccharomyces pombe
Sls1 is primarily required for
cox1
mRNA translation. Yeast 2022; 39:521-534. [DOI: 10.1002/yea.3813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/26/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life SciencesNanjing Normal University1 Wenyuan RoadNanjing210023China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life SciencesNanjing Normal University1 Wenyuan RoadNanjing210023China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life SciencesNanjing Normal University1 Wenyuan RoadNanjing210023China
| |
Collapse
|
4
|
Apostolopoulos A, Iwasaki S. Into the matrix: current methods for mitochondrial translation studies. J Biochem 2022; 171:379-387. [PMID: 35080613 DOI: 10.1093/jb/mvac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022] Open
Abstract
In addition to the cytoplasmic translation system, eukaryotic cells house additional protein synthesis machinery in mitochondria. The importance of this in organello translation is exemplified by clinical pathologies associated with mutations in mitochondrial translation factors. Although a detailed understanding of mitochondrial translation has long been awaited, quantitative, comprehensive, and spatiotemporal measurements have posed analytic challenges. The recent development of novel approaches for studying mitochondrial protein synthesis has overcome these issues and expands our understanding of the unique translation system. Here, we review the current technologies for the investigation of mitochondrial translation and the insights provided by their application.
Collapse
Affiliation(s)
- Antonios Apostolopoulos
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan.,RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan.,RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Herbert CJ, Labarre-Mariotte S, Cornu D, Sophie C, Panozzo C, Michel T, Dujardin G, Bonnefoy N. Translational activators and mitoribosomal isoforms cooperate to mediate mRNA-specific translation in Schizosaccharomyces pombe mitochondria. Nucleic Acids Res 2021; 49:11145-11166. [PMID: 34634819 PMCID: PMC8565316 DOI: 10.1093/nar/gkab789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial mRNAs encode key subunits of the oxidative phosphorylation complexes that produce energy for the cell. In Saccharomyces cerevisiae, mitochondrial translation is under the control of translational activators, specific to each mRNA. In Schizosaccharomyces pombe, which more closely resembles the human system by its mitochondrial DNA structure and physiology, most translational activators appear to be either lacking, or recruited for post-translational functions. By combining bioinformatics, genetic and biochemical approaches we identified two interacting factors, Cbp7 and Cbp8, controlling Cytb production in S. pombe. We show that their absence affects cytb mRNA stability and impairs the detection of the Cytb protein. We further identified two classes of Cbp7/Cbp8 partners and showed that they modulated Cytb or Cox1 synthesis. First, two isoforms of bS1m, a protein of the small mitoribosomal subunit, that appear mutually exclusive and confer translational specificity. Second, a complex of four proteins dedicated to Cox1 synthesis, which includes an RNA helicase that interacts with the mitochondrial ribosome. Our results suggest that S. pombe contains, in addition to complexes of translational activators, a heterogeneous population of mitochondrial ribosomes that could specifically modulate translation depending on the mRNA translated, in order to optimally balance the production of different respiratory complex subunits.
Collapse
Affiliation(s)
- Christopher J Herbert
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Sylvie Labarre-Mariotte
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - David Cornu
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Cyrielle Sophie
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Cristina Panozzo
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Thomas Michel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Geneviève Dujardin
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Nathalie Bonnefoy
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
6
|
Liu Z, Li Y, Xie W, Huang Y. Schizosaccharomyces pombe Ppr10 is required for mitochondrial translation. FEMS Microbiol Lett 2020; 367:5922721. [PMID: 33049028 DOI: 10.1093/femsle/fnaa170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial genome encodes key components of the oxidative phosphorylation (OXPHOS) system, whose expression is essential for mitochondrial functions. We have previously shown that deletion of the Schizosaccharomyces pombe ppr10 encoding a pentatricopeptide repeat protein severely reduces the mature levels of intron-containing mitochondrial transcripts cox1 and cob1, and severely impairs mitochondrial translation. In this study, we examined the possibility that the reduced levels of Cox1 and Cob1 proteins in cells were due to lowered levels of cox1 and cob1 mRNAs. We found that deletion of ppr10 did not affect the levels of mature cox1 and cob1 mRNAs in a mitochondrial intronless background. However, synthesis of Cox1 and Cob1 proteins were still severely affected by deletion of ppr10 in a mitochondrial intronless background. Consistent with this, we found that deletion of mitochondrial introns could not rescue the respiratory growth defect of Δppr10 cells. Our results reveal that Ppr10 is not required for the stability of cox1 and cob1 mRNAs, and provide further support for the idea that Ppr10 plays a critical role in mitochondrial translation.
Collapse
Affiliation(s)
- Zecheng Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Rd, Nanjing, 210023, China
| | - Yan Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Rd, Nanjing, 210023, China
| | - Wanqiu Xie
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Rd, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Rd, Nanjing, 210023, China
| |
Collapse
|
7
|
Initiation Factor 3 is Dispensable For Mitochondrial Translation in Cultured Human Cells. Sci Rep 2020; 10:7110. [PMID: 32346061 PMCID: PMC7188818 DOI: 10.1038/s41598-020-64139-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/13/2020] [Indexed: 11/08/2022] Open
Abstract
The initiation of protein synthesis in bacteria is ruled by three canonical factors: IF1, IF2, and IF3. This system persists in human mitochondria; however, it functions in a rather different way due to specialization and adaptation to the organellar micro-environment. We focused on human mitochondrial IF3, which was earlier studied in vitro, but no knock-out cellular models have been published up to date. In this work, we generated human HeLa cell lines deficient in the MTIF3 gene and analyzed their mitochondrial function. Despite the lack of IF3mt in these cells, they preserved functional mitochondria capable of oxygen consumption and protein synthesis; however, the translation of ATP6 mRNA was selectively decreased which compromised the assembly of ATP synthase. Together with the analogous results obtained earlier for baker's yeast mitochondrial IF3, our findings point to a functional divergence of mitochondrial initiation factors from their bacterial ancestors.
Collapse
|
8
|
Ferreira N, Perks KL, Rossetti G, Rudler DL, Hughes LA, Ermer JA, Scott LH, Kuznetsova I, Richman TR, Narayana VK, Abudulai LN, Shearwood AJ, Cserne Szappanos H, Tull D, Yeoh GC, Hool LC, Filipovska A, Rackham O. Stress signaling and cellular proliferation reverse the effects of mitochondrial mistranslation. EMBO J 2019; 38:e102155. [PMID: 31721250 PMCID: PMC6912024 DOI: 10.15252/embj.2019102155] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Translation fidelity is crucial for prokaryotes and eukaryotic nuclear-encoded proteins; however, little is known about the role of mistranslation in mitochondria and its potential effects on metabolism. We generated yeast and mouse models with error-prone and hyper-accurate mitochondrial translation, and found that translation rate is more important than translational accuracy for cell function in mammals. Specifically, we found that mitochondrial mistranslation causes reduced overall mitochondrial translation and respiratory complex assembly rates. In mammals, this effect is compensated for by increased mitochondrial protein stability and upregulation of the citric acid cycle. Moreover, this induced mitochondrial stress signaling, which enables the recovery of mitochondrial translation via mitochondrial biogenesis, telomerase expression, and cell proliferation, and thereby normalizes metabolism. Conversely, we show that increased fidelity of mitochondrial translation reduces the rate of protein synthesis without eliciting a mitochondrial stress response. Consequently, the rate of translation cannot be recovered and this leads to dilated cardiomyopathy in mice. In summary, our findings reveal mammalian-specific signaling pathways that respond to changes in the fidelity of mitochondrial protein synthesis and affect metabolism.
Collapse
Affiliation(s)
- Nicola Ferreira
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Kara L Perks
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Giulia Rossetti
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Danielle L Rudler
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Laetitia A Hughes
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Judith A Ermer
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Louis H Scott
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Irina Kuznetsova
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Tara R Richman
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | - Vinod K Narayana
- Metabolomics AustraliaBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Laila N Abudulai
- Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaPerthWAAustralia
- School of Molecular SciencesThe University of Western Australia, CrawleyWAAustralia
- The School of Biomedical SciencesThe University of Western AustraliaNedlandsWAAustralia
| | - Anne‐Marie J Shearwood
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
| | | | - Dedreia Tull
- Metabolomics AustraliaBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - George C Yeoh
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
| | - Livia C Hool
- School of Human Sciences (Physiology)The University of Western AustraliaCrawleyWAAustralia
- Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- The University of Western Australia Centre for Medical ResearchCrawleyWAAustralia
- School of Molecular SciencesThe University of Western Australia, CrawleyWAAustralia
| | - Oliver Rackham
- Harry Perkins Institute of Medical ResearchNedlandsWAAustralia
- School of Pharmacy and Biomedical SciencesCurtin UniversityBentleyWAAustralia
- Curtin Health Innovation Research InstituteCurtin UniversityBentleyWAAustralia
| |
Collapse
|
9
|
Luo Y, Su R, Wang Y, Xie W, Liu Z, Huang Y. Schizosaccharomyces pombe Mti2 and Mti3 act in conjunction during mitochondrial translation initiation. FEBS J 2019; 286:4542-4553. [PMID: 31350787 DOI: 10.1111/febs.15021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 01/15/2023]
Abstract
Mitochondrial DNA encodes key subunits of the oxidative phosphorylation complexes essential for ATP production. Translation initiation in mitochondria requires two general factors, mtIF2 and mtIF3, whose counterparts in bacteria are essential for protein synthesis. In this study, we report the characterization of the fission yeast Schizosaccharomyces pombe mtIF2 (Mti2) and mtIF3 (Mti3). Deletion of mti2 impairs cell growth on the respiratory medium. The growth defect of the mti2 deletion mutant can be suppressed by expressing IFM1, the Saccharomyces cerevisiae homolog of Mti2, demonstrating functional conservation between the two proteins. Deletion of mti2 also impairs mitochondrial protein synthesis. Unlike mti2, deletion of mti3 does not affect cell growth on respiratory media and mitochondrial translation. However, deletion of mti3 exacerbates the growth defect of the Δmti2 mutant, suggesting that the two proteins have distinct, but partially overlapping functions during the process of mitochondrial translation initiation in S. pombe. Both Mti2 and Mti3 are associated with the small subunit of the mitochondrial ribosome (mitoribosome). Disruption of mti2, but not mti3, causes dissociation of the mitoribosome and also abolishes Mti3 binding to the small subunit of the mitoribosome. Our results suggest that Mti2 and Mti3 bind in a sequential manner to the small subunit of the mitoribosome and that Mti3 facilitates the function of Mti2 in mitochondrial translation initiation. Our findings also support the view that the importance of the mitochondrial translation initiation factors varies among the organisms.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Ruyue Su
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Wanqiu Xie
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Zecheng Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
10
|
Liu J, Li Y, Chen J, Wang Y, Zou M, Su R, Huang Y. The fission yeast Schizosaccharomyces pombe Mtf2 is required for mitochondrial cox1 gene expression. MICROBIOLOGY-SGM 2018; 164:400-409. [PMID: 29458562 DOI: 10.1099/mic.0.000602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondrial gene expression is essential for adenosine triphosphate synthesis via oxidative phosphorylation, which is the universal energy currency of cells. Here, we report the identification and characterization of a homologue of Saccharomyces cerevisiae Mtf2 (also called Nam1) in Schizosaccharomyces pombe. The Δmtf2 mutant with the intron-containing mitochondrial DNA (mtDNA) exhibited impaired growth on a rich medium containing the non-fermentable carbon source glycerol, suggesting that mtf2 is involved in mitochondrial function. mtf2 deletion in a mitochondrial intron-containing background resulted in a barely detectable level of the cox1 mRNA and a reduction in the level of the cob1 mRNA, and severely impaired cox1 translation. In contrast, mtf2 deletion in a mitochondrial intron-less background did not affect the levels of cox1 and cob1 mRNAs. However, Cox1 synthesis could not be restored to the control level in the Δmtf2 mutant with intron-less mtDNA. Our results suggest that unlike its counterpart in S. cerevisiae which plays a general role in synthesis of mtDNA-encoded proteins, S. pombe Mtf2 primarily functions in cox1 translation and the effect of mtf2 deletion on splicing of introns in mtDNA is likely due to a deficiency in the synthesis of intron-encoded maturases.
Collapse
Affiliation(s)
- Jinyu Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yan Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Jie Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Mengting Zou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Ruyue Su
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| |
Collapse
|
11
|
Wang Y, Yan J, Zhang Q, Ma X, Zhang J, Su M, Wang X, Huang Y. The Schizosaccharomyces pombe PPR protein Ppr10 associates with a novel protein Mpa1 and acts as a mitochondrial translational activator. Nucleic Acids Res 2017; 45:3323-3340. [PMID: 28334955 PMCID: PMC5389468 DOI: 10.1093/nar/gkx127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/14/2017] [Indexed: 01/15/2023] Open
Abstract
The pentatricopeptide repeat (PPR) proteins characterized by tandem repeats of a degenerate 35-amino-acid motif function in all aspects of organellar RNA metabolism, many of which are essential for organellar gene expression. In this study, we report the characterization of a fission yeast Schizosaccharomyces pombe PPR protein, Ppr10 and a novel Ppr10-associated protein, designated Mpa1. The ppr10 deletion mutant exhibits growth defects in respiratory media, and is dramatically impaired for viability during the late-stationary phase. Deletion of ppr10 affects the accumulation of specific mitochondrial mRNAs. Furthermore, deletion of ppr10 severely impairs mitochondrial protein synthesis, suggesting that Ppr10 plays a general role in mitochondrial protein synthesis. Ppr10 interacts with Mpa1 in vivo and in vitro and the two proteins colocalize in the mitochondrial matrix. The ppr10 and mpa1 deletion mutants exhibit very similar phenotypes. One of Mpa1's functions is to maintain the normal protein level of Ppr10 protein by protecting it from degradation by the mitochondrial matrix protease Lon1. Our findings suggest that Ppr10 functions as a general mitochondrial translational activator, likely through interaction with mitochondrial mRNAs and mitochondrial translation initiation factor Mti2, and that Ppr10 requires Mpa1 association for stability and function.
Collapse
Affiliation(s)
- Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jianhua Yan
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingzhen Zhang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xuting Ma
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Juan Zhang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Minghui Su
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xiaojun Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
12
|
Couvillion MT, Soto IC, Shipkovenska G, Churchman LS. Synchronized mitochondrial and cytosolic translation programs. Nature 2016; 533:499-503. [PMID: 27225121 PMCID: PMC4964289 DOI: 10.1038/nature18015] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/18/2016] [Indexed: 01/21/2023]
Abstract
Oxidative phosphorylation (OXPHOS) is fundamental for life. OXPHOS complexes pose a unique challenge for the cell, because their subunits are encoded on two different genomes, the nuclear genome and the mitochondrial genome. Genomic approaches designed to study nuclear/cytosolic and bacterial gene expression have not been broadly applied to the mitochondrial system; thus the co-regulation of OXPHOS genes remains largely unexplored. Here we globally monitored mitochondrial and nuclear gene expression processes in Saccharomyces cerevisiae during mitochondrial biogenesis, when OXPHOS complexes are synthesized. Nuclear- and mitochondrial-encoded OXPHOS transcript levels do not increase concordantly. Instead, we observe that mitochondrial and cytosolic translation are rapidly and dynamically regulated in a strikingly synchronous fashion. Furthermore, the coordinated translation programs are controlled unidirectionally through the intricate and dynamic control of cytosolic translation. Thus the nuclear genome carefully directs the coordination of mitochondrial and cytosolic translation to orchestrate the timely synthesis of each OXPHOS complex, representing an unappreciated regulatory layer shaping the mitochondrial proteome. Our whole-cell genomic profiling approach establishes a foundation for global gene regulatory studies of mitochondrial biology.
Collapse
Affiliation(s)
- Mary T Couvillion
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Iliana C Soto
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Gergana Shipkovenska
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - L Stirling Churchman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
13
|
Kuzmenko A, Derbikova K, Salvatori R, Tankov S, Atkinson GC, Tenson T, Ott M, Kamenski P, Hauryliuk V. Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis. Sci Rep 2016; 6:18749. [PMID: 26728900 PMCID: PMC4700529 DOI: 10.1038/srep18749] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022] Open
Abstract
The mitochondrial genome almost exclusively encodes a handful of transmembrane constituents of the oxidative phosphorylation (OXPHOS) system. Coordinated expression of these genes ensures the correct stoichiometry of the system’s components. Translation initiation in mitochondria is assisted by two general initiation factors mIF2 and mIF3, orthologues of which in bacteria are indispensible for protein synthesis and viability. mIF3 was thought to be absent in Saccharomyces cerevisiae until we recently identified mitochondrial protein Aim23 as the missing orthologue. Here we show that, surprisingly, loss of mIF3/Aim23 in S. cerevisiae does not indiscriminately abrogate mitochondrial translation but rather causes an imbalance in protein production: the rate of synthesis of the Atp9 subunit of F1F0 ATP synthase (complex V) is increased, while expression of Cox1, Cox2 and Cox3 subunits of cytochrome c oxidase (complex IV) is repressed. Our results provide one more example of deviation of mitochondrial translation from its bacterial origins.
Collapse
Affiliation(s)
- Anton Kuzmenko
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Ksenia Derbikova
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Roger Salvatori
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Stoyan Tankov
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Gemma C Atkinson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Martin Ott
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Piotr Kamenski
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden
| |
Collapse
|
14
|
Bourens M, Boulet A, Leary SC, Barrientos A. Human COX20 cooperates with SCO1 and SCO2 to mature COX2 and promote the assembly of cytochrome c oxidase. Hum Mol Genet 2014; 23:2901-13. [PMID: 24403053 DOI: 10.1093/hmg/ddu003] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cytochrome c oxidase (CIV) deficiency is one of the most common respiratory chain defects in patients presenting with mitochondrial encephalocardiomyopathies. CIV biogenesis is complicated by the dual genetic origin of its structural subunits, and assembly of a functional holoenzyme complex requires a large number of nucleus-encoded assembly factors. In general, the functions of these assembly factors remain poorly understood, and mechanistic investigations of human CIV biogenesis have been limited by the availability of model cell lines. Here, we have used small interference RNA and transcription activator-like effector nucleases (TALENs) technology to create knockdown and knockout human cell lines, respectively, to study the function of the CIV assembly factor COX20 (FAM36A). These cell lines exhibit a severe, isolated CIV deficiency due to instability of COX2, a mitochondrion-encoded CIV subunit. Mitochondria lacking COX20 accumulate CIV subassemblies containing COX1 and COX4, similar to those detected in fibroblasts from patients carrying mutations in the COX2 copper chaperones SCO1 and SCO2. These results imply that in the absence of COX20, COX2 is inefficiently incorporated into early CIV subassemblies. Immunoprecipitation assays using a stable COX20 knockout cell line expressing functional COX20-FLAG allowed us to identify an interaction between COX20 and newly synthesized COX2. Additionally, we show that SCO1 and SCO2 act on COX20-bound COX2. We propose that COX20 acts as a chaperone in the early steps of COX2 maturation, stabilizing the newly synthesized protein and presenting COX2 to its metallochaperone module, which in turn facilitates the incorporation of mature COX2 into the CIV assembly line.
Collapse
|
15
|
Dujeancourt L, Richter R, Chrzanowska-Lightowlers ZM, Bonnefoy N, Herbert CJ. Interactions between peptidyl tRNA hydrolase homologs and the ribosomal release factor Mrf1 in S. pombe mitochondria. Mitochondrion 2013; 13:871-80. [PMID: 23892058 PMCID: PMC3919214 DOI: 10.1016/j.mito.2013.07.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 06/19/2013] [Accepted: 07/18/2013] [Indexed: 11/22/2022]
Abstract
Mitochondrial translation synthesizes key subunits of the respiratory complexes. In Schizosaccharomyces pombe, strains lacking Mrf1, the mitochondrial stop codon recognition factor, are viable, suggesting that other factors can play a role in translation termination. S. pombe contains four predicted peptidyl tRNA hydrolases, two of which (Pth3 and Pth4), have a GGQ motif that is conserved in class I release factors. We show that high dosage of Pth4 can compensate for the absence of Mrf1 and loss of Pth4 exacerbates the lack of Mrf1. Also Pth4 is a component of the mitochondrial ribosome, suggesting that it could help recycling stalled ribosomes. In S. pombe the peptidyl tRNA hydrolases Pth3 and Pth4 are mitochondrial proteins. Pth3 and Pth4 are associated with the mitochondrial ribosome and the large subunit. Deletion of pth4 and mrf1, encoding the mitochondrial release factor, is co-lethal. Over-expression of pth4 compensates for the deletion of mrf1. Pth4 can act as a release factor in S. pombe mitochondria.
Collapse
Affiliation(s)
- Laurent Dujeancourt
- Centre de Génétique Moléculaire, UPR3404, FRC3115, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
16
|
Kühl I, Fox TD, Bonnefoy N. Schizosaccharomyces pombe homologs of the Saccharomyces cerevisiae mitochondrial proteins Cbp6 and Mss51 function at a post-translational step of respiratory complex biogenesis. Mitochondrion 2012; 12:381-90. [PMID: 22349564 DOI: 10.1016/j.mito.2012.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/31/2012] [Accepted: 02/03/2012] [Indexed: 11/18/2022]
Abstract
Complexes III and IV of the mitochondrial respiratory chain contain a few key subunits encoded by the mitochondrial genome. In Saccharomyces cerevisiae, fifteen mRNA-specific translational activators control mitochondrial translation, of which five are conserved in Schizosaccharomyces pombe. These include homologs of Cbp3, Cbp6 and Mss51 that participate in translation and the post-translational steps leading to the assembly of respiratory complexes III and IV. In this study we show that in contrast to budding yeast, Cbp3, Cbp6 and Mss51 from S. pombe are not required for the translation of mitochondrial mRNAs, but fulfill post-translational functions, thus probably accounting for their conservation.
Collapse
Affiliation(s)
- Inge Kühl
- Centre de Génétique Moléculaire du CNRS, UPR 3404, FRC3115, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
17
|
Kühl I, Dujeancourt L, Gaisne M, Herbert CJ, Bonnefoy N. A genome wide study in fission yeast reveals nine PPR proteins that regulate mitochondrial gene expression. Nucleic Acids Res 2011; 39:8029-41. [PMID: 21727087 PMCID: PMC3185421 DOI: 10.1093/nar/gkr511] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are particularly numerous in plant mitochondria and chloroplasts, where they are involved in different steps of RNA metabolism, probably due to the repeated 35 amino acid PPR motifs that are thought to mediate interactions with RNA. In non-photosynthetic eukaryotes only a handful of PPR proteins exist, for example the human LRPPRC, which is involved in a mitochondrial disease. We have conducted a systematic study of the PPR proteins in the fission yeast Schizosaccharomyces pombe and identified, in addition to the mitochondrial RNA polymerase, eight proteins all of which localized to the mitochondria, and showed some association with the membrane. The absence of all but one of these PPR proteins leads to a respiratory deficiency and modified patterns of steady state mt-mRNAs or newly synthesized mitochondrial proteins. Some cause a general defect, whereas others affect specific mitochondrial RNAs, either coding or non-coding: cox1, cox2, cox3, 15S rRNA, atp9 or atp6, sometimes leading to secondary defects. Interestingly, the two possible homologs of LRPPRC, ppr4 and ppr5, play opposite roles in the expression of the cox1 mt-mRNA, ppr4 being the first mRNA-specific translational activator identified in S. pombe, whereas ppr5 appears to be a general negative regulator of mitochondrial translation.
Collapse
Affiliation(s)
- Inge Kühl
- Centre de Génétique Moléculaire du CNRS, UPR3404, FRC3115, Avenue de Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
18
|
Bcs1p can rescue a large and productive cytochrome bc1 complex assembly intermediate in the inner membrane of yeast mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:91-101. [DOI: 10.1016/j.bbamcr.2010.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/15/2010] [Accepted: 08/11/2010] [Indexed: 11/23/2022]
|
19
|
Das M, Chiron S, Verde F. Microtubule-dependent spatial organization of mitochondria in fission yeast. Methods Cell Biol 2010; 97:203-21. [PMID: 20719273 DOI: 10.1016/s0091-679x(10)97012-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The microtubule cytoskeleton has an important role in the control of mitochondrial distribution in higher eukaryotes. In humans, defects in axonal mitochondrial transport are linked to neurodegenerative diseases. This chapter highlights fission yeast Schizosaccharomyces pombe as a powerful genetic model system for the study of microtubule-dependent mitochondrial movement, dynamics and inheritance.
Collapse
Affiliation(s)
- Maitreyi Das
- Department of Molecular and Cellular Pharmacology (R-189), University of Miami Miller School of Medicine, Miami, Florida 33101, USA
| | | | | |
Collapse
|
20
|
Mathieu L, Bourens M, Marsy S, Hlavacek O, Panozzo C, Dujardin G. A mutational analysis reveals new functional interactions between domains of the Oxa1 protein in Saccharomyces cerevisiae. Mol Microbiol 2009; 75:474-88. [PMID: 20025673 DOI: 10.1111/j.1365-2958.2009.07001.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Oxa1/YidC/Alb3 family plays a key role in the biogenesis of the respiratory and photosynthetic complexes in bacteria and organelles. In Saccharomyces cerevisiae, Oxa1 mediates the co-translational insertion of mitochondrially encoded subunits of the three respiratory complexes III, IV and V within the inner membrane and also controls a late step in complex V assembly. No crystal structure of YidC or Oxa1 is available and little is known about the respective role of each transmembrane segment (TM) and hydrophilic loop of this polytopic protein on the biogenesis of the three complexes. Here, we have generated a collection of random point mutations located in the hydrophobic and hydrophilic domains of the protein and characterized their effects on the assembly of the three respiratory complexes. Our results show mutant-dependent differential effects, particularly on complex V. In order to identify tertiary interactions within Oxa1, we have also isolated revertants carrying second-site compensatory mutations able to restore respiration. This analysis reveals the existence of functional interactions between TM2 and TM5, TM4 and TM5 as well as between TM4 and loop 2, highlighting the key position of TM4 and TM5 in the Oxa1 protein.
Collapse
Affiliation(s)
- Lise Mathieu
- Centre de Génétique Moléculaire du CNRS, FRE3144, FRC3115, Gif sur Yvette cedex, France
| | | | | | | | | | | |
Collapse
|