1
|
Proteomic Shifts Reflecting Oxidative Stress and Reduced Capacity for Protein Synthesis, and Alterations to Mitochondrial Membranes in Neurospora crassa Lacking VDAC. Microorganisms 2022; 10:microorganisms10020198. [PMID: 35208654 PMCID: PMC8877502 DOI: 10.3390/microorganisms10020198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/24/2022] Open
Abstract
Voltage-dependent anion-selective channels (VDAC) maintain the bidirectional flow of small metabolites across the mitochondrial outer membrane and participate in the regulation of multiple cellular processes. To understand the roles of VDAC in cellular homeostasis, preliminary proteomic analyses of S100 cytosolic and mitochondria-enriched fractions from a VDAC-less Neurospora crassa strain (ΔPor-1) were performed. In the variant cells, less abundant proteins include subunits of translation initiation factor eIF-2, enzymes in the shikimate pathway leading to precursors of aromatic amino acids, and enzymes involved in sulfate assimilation and in the synthesis of methionine, cysteine, alanine, serine, and threonine. In contrast, some of the more abundant proteins are involved in electron flow, such as the α subunit of the electron transfer flavoprotein and lactate dehydrogenase, which is involved in one pathway leading to pyruvate synthesis. Increased levels of catalase and catalase activity support predicted increased levels of oxidative stress in ΔPor-1 cells, and higher levels of protein disulfide isomerase suggest activation of the unfolded protein response in the endoplasmic reticulum. ΔPor-1 cells are cold-sensitive, which led us to investigate the impact of the absence of VDAC on several mitochondrial membrane characteristics. Mitochondrial membranes in ΔPor-1 are more fluid than those of wild-type cells, the ratio of C18:1 to C18:3n3 acyl chains is reduced, and ergosterol levels are lower. In summary, these initial results indicate that VDAC-less N. crassa cells are characterized by a lower abundance of proteins involved in amino acid and protein synthesis and by increases in some associated with pyruvate metabolism and stress responses. Membrane lipids and hyphal morphology are also impacted by the absence of VDAC.
Collapse
|
2
|
Characterization of Single Gene Deletion Mutants Affecting Alternative Oxidase Production in Neurospora crassa: Role of the yvh1 Gene. Microorganisms 2020; 8:microorganisms8081186. [PMID: 32759834 PMCID: PMC7463738 DOI: 10.3390/microorganisms8081186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023] Open
Abstract
The Neurospora crassa AOD1 protein is a mitochondrial alternative oxidase that passes electrons directly from ubiquinol to oxygen. The enzyme is encoded by the nuclear aod-1 gene and is produced when the standard electron transport chain is inhibited. We previously identified eleven strains in the N. crassa single gene deletion library that were severely deficient in their ability to produce AOD1 when grown in the presence of chloramphenicol, an inhibitor of mitochondrial translation that is known to induce the enzyme. Three mutants affected previously characterized genes. In this report we examined the remaining mutants and found that the deficiency of AOD1 was due to secondary mutations in all but two of the strains. One of the authentic mutants contained a deletion of the yvh1 gene and was found to have a deficiency of aod-1 transcripts. The YVH1 protein localized to the nucleus and a post mitochondrial pellet from the cytoplasm. A zinc binding domain in the protein was required for rescue of the AOD1 deficiency. In other organisms YVH1 is required for ribosome assembly and mutants have multiple phenotypes. Lack of YVH1 in N. crassa likely also affects ribosome assembly leading to phenotypes that include altered regulation of AOD1 production.
Collapse
|
3
|
Bosnjak N, Smith KM, Asaria I, Lahola-Chomiak A, Kishore N, Todd AT, Freitag M, Nargang FE. Involvement of a G Protein Regulatory Circuit in Alternative Oxidase Production in Neurospora crassa. G3 (BETHESDA, MD.) 2019; 9:3453-3465. [PMID: 31444295 PMCID: PMC6778808 DOI: 10.1534/g3.119.400522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
The Neurospora crassa nuclear aod-1 gene encodes an alternative oxidase that functions in mitochondria. The enzyme provides a branch from the standard electron transport chain by transferring electrons directly from ubiquinol to oxygen. In standard laboratory strains, aod-1 is transcribed at very low levels under normal growth conditions. However, if the standard electron transport chain is disrupted, aod-1 mRNA expression is induced and the AOD1 protein is produced. We previously identified a strain of N. crassa, that produces high levels of aod-1 transcript under non-inducing conditions. Here we have crossed this strain to a standard lab strain and determined the genomic sequences of the parents and several progeny. Analysis of the sequence data and the levels of aod-1 mRNA in uninduced cultures revealed that a frameshift mutation in the flbA gene results in the high uninduced expression of aod-1 The flbA gene encodes a regulator of G protein signaling that decreases the activity of the Gα subunit of heterotrimeric G proteins. Our data suggest that strains with a functional flbA gene prevent uninduced expression of aod-1 by inactivating a G protein signaling pathway, and that this pathway is activated in cells grown under conditions that induce aod-1 Induced cells with a deletion of the gene encoding the Gα protein still have a partial increase in aod-1 mRNA levels, suggesting a second pathway for inducing transcription of the gene in N. crassa We also present evidence that a translational control mechanism prevents production of AOD1 protein in uninduced cultures.
Collapse
Affiliation(s)
- Natasa Bosnjak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Iman Asaria
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Adrian Lahola-Chomiak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Nishka Kishore
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Andrea T Todd
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Frank E Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| |
Collapse
|
4
|
Increased reactive oxygen species production and maintenance of membrane potential in VDAC-less Neurospora crassa mitochondria. J Bioenerg Biomembr 2019; 51:341-354. [PMID: 31392584 DOI: 10.1007/s10863-019-09807-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
The highly abundant voltage-dependent anion-selective channel (VDAC) allows transit of metabolites across the mitochondrial outer membrane. Previous studies in Neurospora crassa showed that the LoPo strain, expressing 50% of normal VDAC levels, is indistinguishable from wild-type (WT). In contrast, the absence of VDAC (ΔPor-1), or the expression of an N-terminally truncated variant VDAC (ΔN2-12porin), is associated with deficiencies in cytochromes b and aa3 of complexes III and IV and concomitantly increased alternative oxidase (AOX) activity. These observations led us to investigate complex I and complex II activities in these strains, and to explore their mitochondrial bioenergetics. The current study reveals that the total NADH dehydrogenase activity is similar in mitochondria from WT, LoPo, ΔPor-1 and ΔN2-12porin strains; however, in ΔPor-1 most of this activity is the product of rotenone-insensitive alternative NADH dehydrogenases. Unexpectedly, LoPo mitochondria have increased complex II activity. In all mitochondrial types analyzed, oxygen consumption is higher in the presence of the complex II substrate succinate, than with the NADH-linked (complex I) substrates glutamate and malate. When driven by a combination of complex I and II substrates, membrane potentials (Δψ) and oxygen consumption rates (OCR) under non-phosphorylating conditions are similar in all mitochondria. However, as expected, the induction of state 3 (phosphorylating) conditions in ΔPor-1 mitochondria is associated with smaller but significant increases in OCR and smaller decreases in Δψ than those seen in wild-type mitochondria. High ROS production, particularly in the presence of rotenone, was observed under non-phosphorylating conditions in the ΔPor-1 mitochondria. Thus, the absence of VDAC is associated with increased ROS production, in spite of AOX activity and wild-type OCR in ΔPor-1 mitochondria.
Collapse
|
5
|
Qi Z, Smith KM, Bredeweg EL, Bosnjak N, Freitag M, Nargang FE. Alternative Oxidase Transcription Factors AOD2 and AOD5 of Neurospora crassa Control the Expression of Genes Involved in Energy Production and Metabolism. G3 (BETHESDA, MD.) 2017; 7:449-466. [PMID: 27986792 PMCID: PMC5295593 DOI: 10.1534/g3.116.035402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/22/2016] [Indexed: 01/16/2023]
Abstract
In Neurospora crassa, blocking the function of the standard mitochondrial electron transport chain results in the induction of an alternative oxidase (AOX). AOX transfers electrons directly from ubiquinol to molecular oxygen. AOX serves as a model of retrograde regulation since it is encoded by a nuclear gene that is regulated in response to signals from mitochondria. The N. crassa transcription factors AOD2 and AOD5 are necessary for the expression of the AOX gene. To gain insight into the mechanism by which these factors function, and to determine if they have roles in the expression of additional genes in N. crassa, we constructed strains expressing only tagged versions of the proteins. Cell fractionation experiments showed that both proteins are localized to the nucleus under both AOX inducing and noninducing conditions. Furthermore, chromatin immunoprecipitation and high throughput sequencing (ChIP-seq) analysis revealed that the proteins are bound to the promoter region of the AOX gene under both conditions. ChIP-seq also showed that the transcription factors bind to the upstream regions of a number of genes that are involved in energy production and metabolism. Dependence on AOD2 and AOD5 for the expression of several of these genes was verified by quantitative PCR. The majority of ChIP-seq peaks observed were enriched for both AOD2 and AOD5. However, we also observed occasional sites where one factor appeared to bind preferentially. The most striking of these was a conserved sequence that bound large amounts of AOD2 but little AOD5. This sequence was found within a 310 bp repeat unit that occurs at several locations in the genome.
Collapse
Affiliation(s)
- Zhigang Qi
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Erin L Bredeweg
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Natasa Bosnjak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Frank E Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
6
|
Zhang Y, Avalos JL. Traditional and novel tools to probe the mitochondrial metabolism in health and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28067471 DOI: 10.1002/wsbm.1373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Abstract
Mitochondrial metabolism links energy production to other essential cellular processes such as signaling, cellular differentiation, and apoptosis. In addition to producing adenosine triphosphate (ATP) as an energy source, mitochondria are responsible for the synthesis of a myriad of important metabolites and cofactors such as tetrahydrofolate, α-ketoacids, steroids, aminolevulinic acid, biotin, lipoic acid, acetyl-CoA, iron-sulfur clusters, heme, and ubiquinone. Furthermore, mitochondria and their metabolism have been implicated in aging and several human diseases, including inherited mitochondrial disorders, cardiac dysfunction, heart failure, neurodegenerative diseases, diabetes, and cancer. Therefore, there is great interest in understanding mitochondrial metabolism and the complex relationship it has with other cellular processes. A large number of studies on mitochondrial metabolism have been conducted in the last 50 years, taking a broad range of approaches. In this review, we summarize and discuss the most commonly used tools that have been used to study different aspects of the metabolism of mitochondria: ranging from dyes that monitor changes in the mitochondrial membrane potential and pharmacological tools to study respiration or ATP synthesis, to more modern tools such as genetically encoded biosensors and trans-omic approaches enabled by recent advances in mass spectrometry, computation, and other technologies. These tools have allowed the large number of studies that have shaped our current understanding of mitochondrial metabolism. WIREs Syst Biol Med 2017, 9:e1373. doi: 10.1002/wsbm.1373 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yanfei Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.,Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
7
|
Wirsing L, Klawonn F, Sassen WA, Lünsdorf H, Probst C, Hust M, Mendel RR, Kruse T, Jänsch L. Linear Discriminant Analysis Identifies Mitochondrially Localized Proteins in Neurospora crassa. J Proteome Res 2015. [PMID: 26215788 DOI: 10.1021/acs.jproteome.5b00329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Besides their role as powerhouses, mitochondria play a pivotal role in the spatial organization of numerous enzymatic functions. They are connected to the ER, and many pathways are organized through the mitochondrial membranes. Thus, the precise definition of mitochondrial proteomes remains a challenging task. Here, we have established a proteomic strategy to accurately determine the mitochondrial localization of proteins from the fungal model organism Neurospora crassa. This strategy relies on both highly pure mitochondria as well as the quantitative monitoring of mitochondrial components along their consecutive enrichment. Pure intact mitochondria were obtained by a multistep approach combining differential and density Percoll (ultra) centrifugations. When compared with three other intermediate enrichment stages, peptide sequencing and quantitative profiling of pure mitochondrial fractions revealed prototypic regulatory profiles of per se mitochondrial components. These regulatory profiles constitute a distinct cluster defining the mitochondrial compartment and support linear discriminant analyses, which rationalized the annotation process. In total, this approach experimentally validated the mitochondrial localization of 512 proteins including 57 proteins that had not been reported for N. crassa before.
Collapse
Affiliation(s)
- Lisette Wirsing
- Cellular Proteomics Research Group, §Central Facility for Microscopy, Helmholtz Centre for Infection Research , 38124 Braunschweig, Germany
| | - Frank Klawonn
- Cellular Proteomics Research Group, §Central Facility for Microscopy, Helmholtz Centre for Infection Research , 38124 Braunschweig, Germany.,Department of Computer Science, Ostfalia University of Applied Sciences , 38302 Wolfenbüttel, Germany
| | | | | | | | | | | | | | - Lothar Jänsch
- Cellular Proteomics Research Group, §Central Facility for Microscopy, Helmholtz Centre for Infection Research , 38124 Braunschweig, Germany
| |
Collapse
|
8
|
Lackey SWK, Taylor RD, Go NE, Wong A, Sherman EL, Nargang FE. Evidence supporting the 19 β-strand model for Tom40 from cysteine scanning and protease site accessibility studies. J Biol Chem 2014; 289:21640-50. [PMID: 24947507 DOI: 10.1074/jbc.m114.578765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Most proteins found in mitochondria are translated in the cytosol and enter the organelle via the TOM complex (translocase of the outer mitochondrial membrane). Tom40 is the pore forming component of the complex. Although the three-dimensional structure of Tom40 has not been determined, the structure of porin, a related protein, has been shown to be a β-barrel containing 19 membrane spanning β-strands and an N-terminal α-helical region. The evolutionary relationship between the two proteins has allowed modeling of Tom40 into a similar structure by several laboratories. However, it has been suggested that the 19-strand porin structure does not represent the native form of the protein. If true, modeling of Tom40 based on the porin structure would also be invalid. We have used substituted cysteine accessibility mapping to identify several potential β-strands in the Tom40 protein in isolated mitochondria. These data, together with protease accessibility studies, support the 19 β-strand model for Tom40 with the C-terminal end of the protein localized to the intermembrane space.
Collapse
Affiliation(s)
- Sebastian W K Lackey
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rebecca D Taylor
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Nancy E Go
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Annie Wong
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - E Laura Sherman
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Frank E Nargang
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
9
|
Genetic characterization of the Neurospora crassa molybdenum cofactor biosynthesis. Fungal Genet Biol 2014; 66:69-78. [DOI: 10.1016/j.fgb.2014.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/18/2022]
|
10
|
Wideman JG, Lackey SWK, Srayko MA, Norton KA, Nargang FE. Analysis of mutations in Neurospora crassa ERMES components reveals specific functions related to β-barrel protein assembly and maintenance of mitochondrial morphology. PLoS One 2013; 8:e71837. [PMID: 23940790 PMCID: PMC3733929 DOI: 10.1371/journal.pone.0071837] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/03/2013] [Indexed: 11/22/2022] Open
Abstract
The endoplasmic reticulum mitochondria encounter structure (ERMES) tethers the er to mitochondria and contains four structural components: Mmm1, Mdm12, Mdm10, and Mmm2 (Mdm34). The Gem1 protein may play a role in regulating ERMES function. Saccharomyces cerevisiae and Neurospora crassa strains lacking any of Mmm1, Mdm12, or Mdm10 are known to show a variety of phenotypic defects including altered mitochondrial morphology and defects in the assembly of β-barrel proteins into the mitochondrial outer membrane. Here we examine ERMES complex components in N. crassa and show that Mmm1 is an ER membrane protein containing a Cys residue near its N-terminus that is conserved in the class Sordariomycetes. The residue occurs in the ER-lumen domain of the protein and is involved in the formation of disulphide bonds that give rise to Mmm1 dimers. Dimer formation is required for efficient assembly of Tom40 into the TOM complex. However, no effects are seen on porin assembly or mitochondrial morphology. This demonstrates a specificity of function and suggests a direct role for Mmm1 in Tom40 assembly. Mutation of a highly conserved region in the cytosolic domain of Mmm1 results in moderate defects in Tom40 and porin assembly, as well as a slight morphological phenotype. Previous reports have not examined the role of Mmm2 with respect to mitochondrial protein import and assembly. Here we show that absence of Mmm2 affects assembly of β-barrel proteins and that lack of any ERMES structural component results in defects in Tom22 assembly. Loss of N. crassa Gem1 has no effect on the assembly of these proteins but does affect mitochondrial morphology.
Collapse
Affiliation(s)
- Jeremy G. Wideman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Martin A. Srayko
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kacie A. Norton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Frank E. Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Dreyfuss JM, Zucker JD, Hood HM, Ocasio LR, Sachs MS, Galagan JE. Reconstruction and validation of a genome-scale metabolic model for the filamentous fungus Neurospora crassa using FARM. PLoS Comput Biol 2013; 9:e1003126. [PMID: 23935467 PMCID: PMC3730674 DOI: 10.1371/journal.pcbi.1003126] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/20/2013] [Indexed: 11/18/2022] Open
Abstract
The filamentous fungus Neurospora crassa played a central role in the development of twentieth-century genetics, biochemistry and molecular biology, and continues to serve as a model organism for eukaryotic biology. Here, we have reconstructed a genome-scale model of its metabolism. This model consists of 836 metabolic genes, 257 pathways, 6 cellular compartments, and is supported by extensive manual curation of 491 literature citations. To aid our reconstruction, we developed three optimization-based algorithms, which together comprise Fast Automated Reconstruction of Metabolism (FARM). These algorithms are: LInear MEtabolite Dilution Flux Balance Analysis (limed-FBA), which predicts flux while linearly accounting for metabolite dilution; One-step functional Pruning (OnePrune), which removes blocked reactions with a single compact linear program; and Consistent Reproduction Of growth/no-growth Phenotype (CROP), which reconciles differences between in silico and experimental gene essentiality faster than previous approaches. Against an independent test set of more than 300 essential/non-essential genes that were not used to train the model, the model displays 93% sensitivity and specificity. We also used the model to simulate the biochemical genetics experiments originally performed on Neurospora by comprehensively predicting nutrient rescue of essential genes and synthetic lethal interactions, and we provide detailed pathway-based mechanistic explanations of our predictions. Our model provides a reliable computational framework for the integration and interpretation of ongoing experimental efforts in Neurospora, and we anticipate that our methods will substantially reduce the manual effort required to develop high-quality genome-scale metabolic models for other organisms. Few organisms have been as foundational to the development of modern genetics and cellular metabolism as Neurospora crassa. Given the wealth of knowledge available for this filamentous fungus, the effort required to manually curate a high-quality genome-scale metabolic reconstruction would be daunting. To aid the reconstruction process, we developed three optimization-based algorithms. The first algorithm predicts flux while linearly accounting for metabolite dilution; the second algorithm removes blocked reactions with one compact linear program; and the third algorithm reconciles differences between in silico predictions and experimental observations of mutant viability. We have used these algorithms to develop the first genome-scale metabolic model for Neurospora. We have validated the accuracy of our model against an independent test set of more than 300 growth/no-growth phenotypes, and our model displays 93% sensitivity and specificity. Simulating the biochemical genetics experiments originally performed on Neurospora, we comprehensively predicted essential genes, nutrient rescues of auxotroph mutants and synthetic lethal interactions. With these predictions, we provide potential mechanistic insight into known mutant phenotypes, and testable hypotheses for novel mutant phenotypes. The model, the algorithms and the testable hypotheses provide a computational foundation for the study of Neurospora crassa metabolism.
Collapse
Affiliation(s)
- Jonathan M. Dreyfuss
- Graduate Program in Bioinformatics, Boston University, Boston, Massachusetts, United States of America
| | - Jeremy D. Zucker
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Tardigrade Biotechnologies, Jamaica Plain, Massachusetts, United States of America
| | - Heather M. Hood
- Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Linda R. Ocasio
- Tardigrade Biotechnologies, Jamaica Plain, Massachusetts, United States of America
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - James E. Galagan
- Graduate Program in Bioinformatics, Boston University, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Nargang FE, Adames K, Rüb C, Cheung S, Easton N, Nargang CE, Chae MS. Identification of genes required for alternative oxidase production in the Neurospora crassa gene knockout library. G3 (BETHESDA, MD.) 2012; 2:1345-56. [PMID: 23173086 PMCID: PMC3484665 DOI: 10.1534/g3.112.004218] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 09/04/2012] [Indexed: 01/22/2023]
Abstract
The alternative oxidase (AOX) of Neurospora crassa transfers electrons from ubiquinol to oxygen. The enzyme is not expressed under normal conditions. However, when the function of the standard electron transport chain is compromised, AOX is induced, providing cells with a means to continue respiration and growth. Induction of the enzyme represents a form of retrograde regulation because AOX is encoded by a nuclear gene that responds to signals produced from inefficiently functioning mitochondria. To identify genes required for AOX expression, we have screened the N. crassa gene knockout library for strains that are unable to grow in the presence of antimycin A, an inhibitor of complex III of the standard electron transport chain. From the 7800 strains containing knockouts of different genes, we identified 62 strains that have reduced levels of AOX when grown under conditions known to induce the enzyme. Some strains have virtually no AOX, whereas others have only a slight reduction of the protein. A broad range of seemingly unrelated functions are represented in the knockouts. For example, we identified transcription factors, kinases, the mitochondrial import receptor Tom70, three subunits of the COP9 signalosome, a monothiol glutaredoxin, and several hypothetical proteins as being required for wild-type levels of AOX production. Our results suggest that defects in many signaling or metabolic pathways have a negative effect on AOX expression and imply that complex systems control production of the enzyme.
Collapse
Affiliation(s)
- Frank E Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | | | | | |
Collapse
|
13
|
Lackey SWK, Wideman JG, Kennedy EK, Go NE, Nargang FE. The Neurospora crassa TOB complex: analysis of the topology and function of Tob38 and Tob37. PLoS One 2011; 6:e25650. [PMID: 21980517 PMCID: PMC3182244 DOI: 10.1371/journal.pone.0025650] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022] Open
Abstract
The TOB or SAM complex is responsible for assembling several proteins into the mitochondrial outer membrane, including all β-barrel proteins. We have identified several forms of the complex in Neurospora crassa. One form contains Tob55, Tob38, and Tob37; another contains these three subunits plus the Mdm10 protein; while additional complexes contain only Tob55. As previously shown for Tob55, both Tob37 and Tob38 are essential for viability of the organism. Mitochondria deficient in Tob37 or Tob38 have reduced ability to assemble β-barrel proteins. The function of two hydrophobic domains in the C-terminal region of the Tob37 protein was investigated. Mutant Tob37 proteins lacking either or both of these regions are able to restore viability to cells lacking the protein. One of the domains was found to anchor the protein to the outer mitochondrial membrane but was not necessary for targeting or association of the protein with mitochondria. Examination of the import properties of mitochondria containing Tob37 with deletions of the hydrophobic domains reveals that the topology of Tob37 may be important for interactions between specific classes of β-barrel precursors and the TOB complex.
Collapse
Affiliation(s)
| | - Jeremy G. Wideman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Erin K. Kennedy
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nancy E. Go
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Frank E. Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
14
|
Wideman JG, Go NE, Klein A, Redmond E, Lackey SWK, Tao T, Kalbacher H, Rapaport D, Neupert W, Nargang FE. Roles of the Mdm10, Tom7, Mdm12, and Mmm1 proteins in the assembly of mitochondrial outer membrane proteins in Neurospora crassa. Mol Biol Cell 2010; 21:1725-36. [PMID: 20335503 PMCID: PMC2869378 DOI: 10.1091/mbc.e09-10-0844] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mdm10, Mdm12, and Mmm1 are implicated in several mitochondrial functions. We show that loss of any of these proteins in Neurospora crassa results in the formation of large mitochondrial tubules and reduces assembly of porin and Tom40. The effects of mutations affecting Tom7 and Mdm10 are additive with respect to the assembly of Tom40 and porin. The Mdm10, Mdm12, and Mmm1 proteins have been implicated in several mitochondrial functions including mitochondrial distribution and morphology, assembly of β-barrel proteins such as Tom40 and porin, association of mitochondria and endoplasmic reticulum, and maintaining lipid composition of mitochondrial membranes. Here we show that loss of any of these three proteins in Neurospora crassa results in the formation of large mitochondrial tubules and reduces the assembly of porin and Tom40 into the outer membrane. We have also investigated the relationship of Mdm10 and Tom7 in the biogenesis of β-barrel proteins. Previous work showed that mitochondria lacking Tom7 assemble Tom40 more efficiently, and porin less efficiently, than wild-type mitochondria. Analysis of mdm10 and tom7 single and double mutants, has demonstrated that the effects of the two mutations are additive. Loss of Tom7 partially compensates for the decrease in Tom40 assembly resulting from loss of Mdm10, whereas porin assembly is more severely reduced in the double mutant than in either single mutant. The additive effects observed in the double mutant suggest that different steps in β-barrel assembly are affected in the individual mutants. Many aspects of Tom7 and Mdm10 function in N. crassa are different from those of their homologues in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Jeremy G Wideman
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|