1
|
Firdous H, Ali A, Zafar MM, Joyia FA, Hamza M, Razzaq A, Uzair M, Ercisli S, Chattha WS, Seleiman MF, Khan N, Jiang X. Nuclear integration of MYB36 and APX-1 genes impart heat tolerance in wheat. Funct Integr Genomics 2024; 24:185. [PMID: 39373775 DOI: 10.1007/s10142-024-01456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024]
Abstract
Elevated temperatures during grain filling stage, exceeding the optimal range by 3-4 °C, not only results in a substantial yield reduction in wheat by 10-50% but activates disease and insect infestation. In this research, we introduced heat-tolerant MYB36 and APX-1 gene cassettes into wheat, employing an efficient Agrobacterium mediated transformation protocol, demonstrating higher transformation efficiency. The study encompassed the assembly of MYB36 and APX-1 gene cassettes, and confirmation of gene products in Agrobacterium, followed by the transformation of the MYB36 and APX-1 genes into wheat explants. We were able to select transgenic plant with various combinations. The transgenic plants with APX-1 gene alone produced medium sized grain and spike whereas with both APX-1 and MYB36 genes expressed individually under SPS and rd29a promoter respectively showed good tolerance to heat at 32oC at grain filling/milking stage and produced relatively bold grains. While non-transgenic plants grains were wrinkled with thin spike showing susceptibility to heat. This research contributes to the broader scientific understanding of plant stress responses and the combined effectiveness of MYB36 and APX-1 genes in crop improvement without disturbing normal nutritional values. The gene integration can serve as a valuable tool in breeding programs aimed at developing heat-tolerant wheat varieties. These findings also advance our comprehension of the functions of heat-induced genes and lay the foundation for selecting optimal candidates for in-depth functional studies of heat-responsive MYB36 and APX-1 genes in wheat.
Collapse
Grants
- RSPD2024R751 This research was funded by Researchers Supporting Project (RSPD2024R751), King Saud University, Riyadh, Saudi Arabia.
- RSPD2024R751 This research was funded by Researchers Supporting Project (RSPD2024R751), King Saud University, Riyadh, Saudi Arabia.
- RSPD2024R751 This research was funded by Researchers Supporting Project (RSPD2024R751), King Saud University, Riyadh, Saudi Arabia.
- RSPD2024R751 This research was funded by Researchers Supporting Project (RSPD2024R751), King Saud University, Riyadh, Saudi Arabia.
- RSPD2024R751 This research was funded by Researchers Supporting Project (RSPD2024R751), King Saud University, Riyadh, Saudi Arabia.
- RSPD2024R751 This research was funded by Researchers Supporting Project (RSPD2024R751), King Saud University, Riyadh, Saudi Arabia.
- RSPD2024R751 This research was funded by Researchers Supporting Project (RSPD2024R751), King Saud University, Riyadh, Saudi Arabia.
- RSPD2024R751 This research was funded by Researchers Supporting Project (RSPD2024R751), King Saud University, Riyadh, Saudi Arabia.
- RSPD2024R751 This research was funded by Researchers Supporting Project (RSPD2024R751), King Saud University, Riyadh, Saudi Arabia.
- RSPD2024R751 This research was funded by Researchers Supporting Project (RSPD2024R751), King Saud University, Riyadh, Saudi Arabia.
- RSPD2024R751 This research was funded by Researchers Supporting Project (RSPD2024R751), King Saud University, Riyadh, Saudi Arabia.
Collapse
Affiliation(s)
- Hina Firdous
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Arfan Ali
- FB Genetics, Four Brothers Group, Lahore, Pakistan
| | - Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Faiz Ahmad Joyia
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | | | - Abdul Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Uzair
- Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Waqas Shafqat Chattha
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Naeem Khan
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
| |
Collapse
|
2
|
Wang Y, Zeng J, Su P, Zhao H, Li L, Xie X, Zhang Q, Wu Y, Wang R, Zhang Y, Yu B, Chen M, Wang Y, Yang G, He G, Chang J, Li Y. An established protocol for generating transgenic wheat for wheat functional genomics via particle bombardment. FRONTIERS IN PLANT SCIENCE 2022; 13:979540. [PMID: 36570946 PMCID: PMC9772560 DOI: 10.3389/fpls.2022.979540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Wheat is one of the most important food crops in the world and is considered one of the top targets in crop biotechnology. With the high-quality reference genomes of wheat and its relative species and the recent burst of genomic resources in Triticeae, demands to perform gene functional studies in wheat and genetic improvement have been rapidly increasing, requiring that production of transgenic wheat should become a routine technique. While established for more than 20 years, the particle bombardment-mediated wheat transformation has not become routine yet, with only a handful of labs being proficient in this technique. This could be due to, at least partly, the low transformation efficiency and the technical difficulties. Here, we describe the current version of this method through adaptation and optimization. We report the detailed protocol of producing transgenic wheat by the particle gun, including several critical steps, from the selection of appropriate explants (i.e., immature scutella), the preparation of DNA-coated gold particles, and several established strategies of tissue culture. More importantly, with over 20 years of experience in wheat transformation in our lab, we share the many technical details and recommendations and emphasize that the particle bombardment-mediated approach has fewer limitations in genotype dependency and vector construction when compared with the Agrobacterium-mediated methods. The particle bombardment-mediated method has been successful for over 30 wheat genotypes, from the tetraploid durum wheat to the hexaploid common wheat, from modern elite varieties to landraces. In conclusion, the particle bombardment-mediated wheat transformation has demonstrated its potential and wide applications, and the full set of protocol, experience, and successful reports in many wheat genotypes described here will further its impacts, making it a routine and robust technique in crop research labs worldwide.
Collapse
Affiliation(s)
- Yaqiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, Guangdong, China
| | - Peipei Su
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Li Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaoxue Xie
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Ya’nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Yufan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Boju Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
3
|
Delporte F, Jacquemin JM, Masson P, Watillon B. Insights into the regenerative property of plant cells and their receptivity to transgenesis: wheat as a research case study. PLANT SIGNALING & BEHAVIOR 2012; 7:1608-20. [PMID: 23072995 PMCID: PMC3578902 DOI: 10.4161/psb.22424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
From a holistic perspective, the discovery of cellular plasticity, a very interesting property of totipotency, underlies many topical issues in biology with important medical applications, while transgenesis is a core research tool in biology. Partially known, some basic mechanisms involved in the regenerative property of cells and in their receptivity to transgenesis are common to plant and animal cells and highlight the principle of the unity of life. Transgenesis provides an important investigative instrument in plant physiology and is regarded as a valuable tool for crop improvement. The economic, social, cultural and scientific importance of cereals has led to a rich stream of research into their genetics, biology and evolution. Sustained efforts to achieve the results obtained in the fields of genetic engineering and applied biotechnology reflect this deep interest. Difficulties encountered in creating genetically modified cereals, especially wheat, highlighted the central notions of tissue culture regeneration and transformation competencies. From the perspective of combining or encountering these competencies in the same cell lineage, this reputedly recalcitrant species provides a stimulating biological system in which to explore the physiological and genetic complexity of both competencies. The former involves two phases, dedifferentiation and redifferentiation. Cells undergo development switches regulated by extrinsic and intrinsic factors. The re-entry into the cell division cycle progressively culminates in the development of organized structures. This is achieved by global chromatin reorganization associated with the reprogramming of the gene expression pattern. The latter is linked with surveillance mechanisms and DNA repair, aimed at maintaining genome integrity before cells move into mitosis, and with those mechanisms aimed at genome expression control and regulation. In order to clarify the biological basis of these two physiological properties and their interconnectedness, we look at both competencies at the core of defense/adaptive mechanisms and survival, between undifferentiated cell proliferation and organization, constituting a transition phase between two different dynamic regimes, a typical feature of critical dynamic systems. Opting for a candidate-gene strategy, several gene families could be proposed as relevant targets for investigating this hypothesis at the molecular level.
Collapse
Affiliation(s)
- Fabienne Delporte
- Walloon Agricultural Research Centre (CRAw), Department of Life Sciences, Bioengineering Unit, Gembloux, Belgium.
| | | | | | | |
Collapse
|
4
|
He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ. Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1567-81. [PMID: 20202997 PMCID: PMC2852660 DOI: 10.1093/jxb/erq035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 05/03/2023]
Abstract
An efficient Agrobacterium-mediated durum wheat transformation system has been developed for the production of 121 independent transgenic lines. This improved system used Agrobacterium strain AGL1 containing the superbinary pGreen/pSoup vector system and durum wheat cv Stewart as the recipient plant. Acetosyringone at 400 microM was added to both the inoculation and cultivation medium, and picloram at 10 mg l(-1) and 2 mg l(-1) was used in the cultivation and induction medium, respectively. Compared with 200 microM in the inoculation and cultivation media, the increased acetosyringone concentration led to significantly higher GUS (beta-glucuronidase) transient expression and T-DNA delivery efficiency. However, no evident effects of acetosyringone concentration on regeneration frequency were observed. The higher acetosyringone concentration led to an improvement in average final transformation efficiency from 4.7% to 6.3%. Furthermore, the concentration of picloram in the co-cultivation medium had significant effects on callus induction and regeneration. Compared with 2 mg l(-1) picloram in the co-cultivation medium, increasing the concentration to 10 mg l(-1) picloram resulted in improved final transformation frequency from 2.8% to 6.3%, with the highest frequency of 12.3% reached in one particular experiment, although statistical analysis showed that this difference in final transformation efficiency had a low level of significance. Stable integration of foreign genes, their expression, and inheritance were confirmed by Southern blot analyses, GUS assay, and genetic analysis. Analysis of T(1) progeny showed that, of the 31 transgenic lines randomly selected, nearly one-third had a segregation ratio of 3:1, while the remainder had ratios typical of two or three independently segregating loci.
Collapse
Affiliation(s)
- Y. He
- Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - H. D. Jones
- Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - S. Chen
- Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - X. M. Chen
- Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - D. W. Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - K. X. Li
- Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - D. S. Wang
- Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - L. Q. Xia
- Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|