1
|
Sari D, Gupta K, Thimiri Govinda Raj DB, Aubert A, Drncová P, Garzoni F, Fitzgerald D, Berger I. The MultiBac Baculovirus/Insect Cell Expression Vector System for Producing Complex Protein Biologics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 896:199-215. [PMID: 27165327 PMCID: PMC7122245 DOI: 10.1007/978-3-319-27216-0_13] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiprotein complexes regulate most if not all cellular functions. Elucidating the structure and function of these complex cellular machines is essential for understanding biology. Moreover, multiprotein complexes by themselves constitute powerful reagents as biologics for the prevention and treatment of human diseases. Recombinant production by the baculovirus/insect cell expression system is particularly useful for expressing proteins of eukaryotic origin and their complexes. MultiBac, an advanced baculovirus/insect cell system, has been widely adopted in the last decade to produce multiprotein complexes with many subunits that were hitherto inaccessible, for academic and industrial research and development. The MultiBac system, its development and numerous applications are presented. Future opportunities for utilizing MultiBac to catalyze discovery are outlined.
Collapse
Affiliation(s)
- Duygu Sari
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Kapil Gupta
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Deepak Balaji Thimiri Govinda Raj
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Alice Aubert
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Petra Drncová
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Frederic Garzoni
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Daniel Fitzgerald
- Geneva Biotech SARL, Avenue de la Roseraie 64, 1205, Genève, Switzerland
| | - Imre Berger
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France.
- Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France.
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
2
|
van Oers MM, Pijlman GP, Vlak JM. Thirty years of baculovirus–insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 2015; 96:6-23. [DOI: 10.1099/vir.0.067108-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Monique M. van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
3
|
Fernandes F, Teixeira AP, Carinhas N, Carrondo MJT, Alves PM. Insect cells as a production platform of complex virus-like particles. Expert Rev Vaccines 2013; 12:225-36. [PMID: 23414412 DOI: 10.1586/erv.12.153] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Virus-like particles (VLPs) are multiprotein structures that resemble the conformation of native viruses but lack a viral genome, potentiating their application as safer and cheaper vaccines. The production of VLPs has been strongly linked with the use of insect cells and the baculovirus expression vector system, especially those particles composed of two or more structural viral proteins. In fact, this expression platform has been extensively improved over the years to address the challenges of coexpression of multiple proteins and their proper assembly into complexes in the same cell. In this article, the role of insect cell technology in the development and production of complex VLPs is overviewed; recent achievements, current bottlenecks and future trends are also highlighted.
Collapse
Affiliation(s)
- Fabiana Fernandes
- ITQB-Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
4
|
Sokolenko S, George S, Wagner A, Tuladhar A, Andrich JMS, Aucoin MG. Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnol Adv 2012; 30:766-81. [PMID: 22297133 PMCID: PMC7132753 DOI: 10.1016/j.biotechadv.2012.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 12/12/2022]
Abstract
The baculovirus expression vector system (BEVS) is a versatile and powerful platform for protein expression in insect cells. With the ability to approach similar post-translational modifications as in mammalian cells, the BEVS offers a number of advantages including high levels of expression as well as an inherent safety during manufacture and of the final product. Many BEVS products include proteins and protein complexes that require expression from more than one gene. This review examines the expression strategies that have been used to this end and focuses on the distinguishing features between those that make use of single polycistronic baculovirus (co-expression) and those that use multiple monocistronic baculoviruses (co-infection). Three major areas in which researchers have been able to take advantage of co-expression/co-infection are addressed, including compound structure-function studies, insect cell functionality augmentation, and VLP production. The core of the review discusses the parameters of interest for co-infection and co-expression with time of infection (TOI) and multiplicity of infection (MOI) highlighted for the former and the choice of promoter for the latter. In addition, an overview of modeling approaches is presented, with a suggested trajectory for future exploration. The review concludes with an examination of the gaps that still remain in co-expression/co-infection knowledge and practice.
Collapse
Affiliation(s)
- Stanislav Sokolenko
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
In the early 1980s, the first-published reports of baculovirus-mediated foreign gene expression stimulated great interest in the use of baculovirus-insect cell systems for recombinant protein production. Initially, this system appeared to be the first that would be able to provide the high production levels associated with bacterial systems and the eukaryotic protein processing capabilities associated with mammalian systems. Experience and an increased understanding of basic insect cell biology have shown that these early expectations were not completely realistic. Nevertheless, baculovirus-insect cell expression systems have the capacity to produce many recombinant proteins at high levels and they also provide significant eukaryotic protein processing capabilities. Furthermore, important technological advances over the past 20 years have improved upon the original methods developed for the isolation of baculovirus expression vectors, which were inefficient, required at least some specialized expertise and, therefore, induced some frustration among those who used the original baculovirus-insect cell expression system. Today, virtually any investigator with basic molecular biology training can relatively quickly and efficiently isolate a recombinant baculovirus vector and use it to produce their favorite protein in an insect cell culture. This chapter will begin with background information on the basic baculovirus-insect cell expression system and will then focus on recent developments that have greatly facilitated the ability of an average investigator to take advantage of its attributes.
Collapse
Affiliation(s)
- Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|