1
|
Ciesielska EJ, Kim S, Bisimwa HGM, Grier C, Rahman MM, Young CKJ, Young MJ, Oliveira MT, Ciesielski GL. Remdesivir triphosphate blocks DNA synthesis and increases exonucleolysis by the replicative mitochondrial DNA polymerase, Pol γ. Mitochondrion 2021; 61:147-158. [PMID: 34619353 PMCID: PMC8595818 DOI: 10.1016/j.mito.2021.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic prompted the FDA to authorize a new nucleoside analogue, remdesivir, for emergency use in affected individuals. We examined the effects of its active metabolite, remdesivir triphosphate (RTP), on the activity of the replicative mitochondrial DNA polymerase, Pol γ. We found that while RTP is not incorporated by Pol γ into a nascent DNA strand, it remains associated with the enzyme impeding its synthetic activity and stimulating exonucleolysis. In spite of that, we found no evidence for deleterious effects of remdesivir treatment on the integrity of the mitochondrial genome in human cells in culture.
Collapse
Affiliation(s)
- Elena J Ciesielska
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, United States
| | - Shalom Kim
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, United States
| | | | - Cody Grier
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, United States
| | - Md Mostafijur Rahman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, United States
| | - Carolyn K J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, United States
| | - Matthew J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, United States
| | - Marcos T Oliveira
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - Grzegorz L Ciesielski
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, United States.
| |
Collapse
|
2
|
Ciesielski GL, Kim S, de Bovi Pontes C, Kaguni LS. Physical and Functional Interaction of Mitochondrial Single-Stranded DNA-Binding Protein and the Catalytic Subunit of DNA Polymerase Gamma. Front Genet 2021; 12:721864. [PMID: 34539752 PMCID: PMC8440931 DOI: 10.3389/fgene.2021.721864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
The maintenance of the mitochondrial genome depends on a suite of nucleus-encoded proteins, among which the catalytic subunit of the mitochondrial replicative DNA polymerase, Pol γα, plays a pivotal role. Mutations in the Pol γα-encoding gene, POLG, are a major cause of human mitochondrial disorders. Here we present a study of direct and functional interactions of Pol γα with the mitochondrial single-stranded DNA-binding protein (mtSSB). mtSSB coordinates the activity of the enzymes at the DNA replication fork. However, the mechanism of this functional relationship is elusive, and no direct interactions between the replicative factors have been identified to date. This contrasts strikingly with the extensive interactomes of SSB proteins identified in other homologous replication systems. Here we show for the first time that mtSSB binds Pol γα directly, in a DNA-independent manner. This interaction is strengthened in the absence of the loop 2.3 structure in mtSSB, and is abolished upon preincubation with Pol γβ. Together, our findings suggest that the interaction between mtSSB and polymerase gamma holoenzyme (Pol γ) involves a balance between attractive and repulsive affinities, which have distinct effects on DNA synthesis and exonucleolysis.
Collapse
Affiliation(s)
- Grzegorz L Ciesielski
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.,Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States
| | - Shalom Kim
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States
| | | | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| |
Collapse
|
3
|
González de Cózar JM, Carretero-Junquera M, Ciesielski GL, Miettinen SM, Varjosalo M, Kaguni LS, Dufour E, Jacobs HT. A second hybrid-binding domain modulates the activity of Drosophila ribonuclease H1. J Biochem 2020; 168:515-533. [PMID: 32589740 PMCID: PMC7657459 DOI: 10.1093/jb/mvaa067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/15/2020] [Indexed: 11/14/2022] Open
Abstract
In eukaryotes, ribonuclease H1 (RNase H1) is involved in the processing and removal of RNA/DNA hybrids in both nuclear and mitochondrial DNA. The enzyme comprises a C-terminal catalytic domain and an N-terminal hybrid-binding domain (HBD), separated by a linker of variable length, 115 amino acids in Drosophila melanogaster (Dm). Molecular modelling predicted this extended linker to fold into a structure similar to the conserved HBD. Based on a deletion series, both the catalytic domain and the conserved HBD were required for high-affinity binding to heteroduplex substrates, while loss of the novel HBD led to an ∼90% drop in Kcat with a decreased KM, and a large increase in the stability of the RNA/DNA hybrid-enzyme complex, supporting a bipartite-binding model in which the second HBD facilitates processivity. Shotgun proteomics following in vivo cross-linking identified single-stranded DNA-binding proteins from both nuclear and mitochondrial compartments, respectively RpA-70 and mtSSB, as prominent interaction partners of Dm RNase H1. However, we were not able to document direct and stable interactions with mtSSB when the proteins were co-overexpressed in S2 cells, and functional interactions between them in vitro were minor.
Collapse
Affiliation(s)
| | | | - Grzegorz L Ciesielski
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - Sini M Miettinen
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Laurie S Kaguni
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Eric Dufour
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| |
Collapse
|
4
|
Cerrón F, de Lorenzo S, Lemishko KM, Ciesielski GL, Kaguni LS, Cao FJ, Ibarra B. Replicative DNA polymerases promote active displacement of SSB proteins during lagging strand synthesis. Nucleic Acids Res 2019; 47:5723-5734. [PMID: 30968132 PMCID: PMC6582349 DOI: 10.1093/nar/gkz249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/22/2019] [Accepted: 03/29/2019] [Indexed: 11/23/2022] Open
Abstract
Genome replication induces the generation of large stretches of single-stranded DNA (ssDNA) intermediates that are rapidly protected by single-stranded DNA-binding (SSB) proteins. To date, the mechanism by which tightly bound SSBs are removed from ssDNA by the lagging strand DNA polymerase without compromising the advance of the replication fork remains unresolved. Here, we aimed to address this question by measuring, with optical tweezers, the real-time replication kinetics of the human mitochondrial and bacteriophage T7 DNA polymerases on free-ssDNA, in comparison with ssDNA covered with homologous and non-homologous SSBs under mechanical tension. We find important differences between the force dependencies of the instantaneous replication rates of each polymerase on different substrates. Modeling of the data supports a mechanism in which strong, specific polymerase-SSB interactions, up to ∼12 kBT, are required for the polymerase to dislodge SSB from the template without compromising its instantaneous replication rate, even under stress conditions that may affect SSB–DNA organization and/or polymerase–SSB communication. Upon interaction, the elimination of template secondary structure by SSB binding facilitates the maximum replication rate of the lagging strand polymerase. In contrast, in the absence of polymerase–SSB interactions, SSB poses an effective barrier for the advance of the polymerase, slowing down DNA synthesis.
Collapse
Affiliation(s)
- Fernando Cerrón
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia. 28049 Madrid, Spain.,Departamento Estructura de la Materia, Física Térmica y Electrónica. Universidad Complutense. 28040 Madrid, Spain
| | - Sara de Lorenzo
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia. 28049 Madrid, Spain
| | - Kateryna M Lemishko
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia. 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología". 28049 Madrid, Spain
| | - Grzegorz L Ciesielski
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA
| | - Francisco J Cao
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia. 28049 Madrid, Spain.,Departamento Estructura de la Materia, Física Térmica y Electrónica. Universidad Complutense. 28040 Madrid, Spain
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia. 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología". 28049 Madrid, Spain
| |
Collapse
|
5
|
Morin JA, Cerrón F, Jarillo J, Beltran-Heredia E, Ciesielski GL, Arias-Gonzalez JR, Kaguni LS, Cao FJ, Ibarra B. DNA synthesis determines the binding mode of the human mitochondrial single-stranded DNA-binding protein. Nucleic Acids Res 2017; 45:7237-7248. [PMID: 28486639 PMCID: PMC5499585 DOI: 10.1093/nar/gkx395] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/27/2017] [Indexed: 12/02/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play a key role in genome maintenance, binding and organizing single-stranded DNA (ssDNA) intermediates. Multimeric SSBs, such as the human mitochondrial SSB (HmtSSB), present multiple sites to interact with ssDNA, which has been shown in vitro to enable them to bind a variable number of single-stranded nucleotides depending on the salt and protein concentration. It has long been suggested that different binding modes might be used selectively for different functions. To study this possibility, we used optical tweezers to determine and compare the structure and energetics of long, individual HmtSSB–DNA complexes assembled on preformed ssDNA and on ssDNA generated gradually during ‘in situ’ DNA synthesis. We show that HmtSSB binds to preformed ssDNA in two major modes, depending on salt and protein concentration. However, when protein binding was coupled to strand-displacement DNA synthesis, only one of the two binding modes was observed under all experimental conditions. Our results reveal a key role for the gradual generation of ssDNA in modulating the binding mode of a multimeric SSB protein and consequently, in generating the appropriate nucleoprotein structure for DNA synthetic reactions required for genome maintenance.
Collapse
Affiliation(s)
- José A Morin
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049 Madrid, Spain
| | - Fernando Cerrón
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049 Madrid, Spain
| | - Javier Jarillo
- Departamento Física Atómica, Molecular y Nuclear, Universidad Complutense, 28040 Madrid, Spain
| | - Elena Beltran-Heredia
- Departamento Física Atómica, Molecular y Nuclear, Universidad Complutense, 28040 Madrid, Spain
| | - Grzegorz L Ciesielski
- Institute of Biosciences and Medical Technology, University of Tampere, 33520 Tampere, Finland.,Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA
| | - J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) and CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| | - Laurie S Kaguni
- Institute of Biosciences and Medical Technology, University of Tampere, 33520 Tampere, Finland.,Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48823, USA
| | - Francisco J Cao
- Departamento Física Atómica, Molecular y Nuclear, Universidad Complutense, 28040 Madrid, Spain
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) and CNB-CSIC-IMDEA Nanociencia Associated Unit 'Unidad de Nanobiotecnología', 28049 Madrid, Spain
| |
Collapse
|
6
|
Ciesielski GL, Rosado-Ruiz FA, Kaguni LS. Purification and Comparative Assay of Human Mitochondrial Single-Stranded DNA-Binding Protein. Methods Mol Biol 2016; 1351:211-22. [PMID: 26530685 PMCID: PMC4703105 DOI: 10.1007/978-1-4939-3040-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The mitochondrial single-stranded DNA-binding protein (mtSSB) coordinates the function of replisome components at the mitochondrial replication fork. In recent years, it has been demonstrated that mtSSB stimulates the activities of DNA polymerase γ (Pol γ) and mitochondrial DNA (mtDNA) helicase in a concentration-dependent manner. Here we present a new approach to purify the human mtSSB and our standard assays to evaluate its biochemical properties, including a Gel Mobility Shift Assay (GMSA) to assess single-stranded DNA (ssDNA) binding activity, and an assay to assess SSB stimulation of Pol γ activity.
Collapse
Affiliation(s)
- Grzegorz L Ciesielski
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, 33014, Finland
| | - Fernando A Rosado-Ruiz
- Department of Biochemistry and Molecular Biology, Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, 48824-1319, USA
| | - Laurie S Kaguni
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, 33014, Finland.
- Department of Biochemistry and Molecular Biology, Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, 48824-1319, USA.
| |
Collapse
|
7
|
Ciesielski GL, Bermek O, Rosado-Ruiz FA, Hovde SL, Neitzke OJ, Griffith JD, Kaguni LS. Mitochondrial Single-stranded DNA-binding Proteins Stimulate the Activity of DNA Polymerase γ by Organization of the Template DNA. J Biol Chem 2015; 290:28697-707. [PMID: 26446790 DOI: 10.1074/jbc.m115.673707] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 11/06/2022] Open
Abstract
The activity of the mitochondrial replicase, DNA polymerase γ (Pol γ) is stimulated by another key component of the mitochondrial replisome, the mitochondrial single-stranded DNA-binding protein (mtSSB). We have performed a comparative analysis of the human and Drosophila Pols γ with their cognate mtSSBs, evaluating their functional relationships using a combined approach of biochemical assays and electron microscopy. We found that increasing concentrations of both mtSSBs led to the elimination of template secondary structure and gradual opening of the template DNA, through a series of visually similar template species. The stimulatory effect of mtSSB on Pol γ on these ssDNA templates is not species-specific. We observed that human mtSSB can be substituted by its Drosophila homologue, and vice versa, finding that a lower concentration of insect mtSSB promotes efficient stimulation of either Pol. Notably, distinct phases of the stimulation by both mtSSBs are distinguishable, and they are characterized by a similar organization of the template DNA for both Pols γ. We conclude that organization of the template DNA is the major factor contributing to the stimulation of Pol γ activity. Additionally, we observed that human Pol γ preferentially utilizes compacted templates, whereas the insect enzyme achieves its maximal activity on open templates, emphasizing the relative importance of template DNA organization in modulating Pol γ activity and the variation among systems.
Collapse
Affiliation(s)
- Grzegorz L Ciesielski
- From the Institute of Biosciences and Medical Technology, University of Tampere, 33520 Tampere, Finland, the Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48823, and
| | - Oya Bermek
- the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Fernando A Rosado-Ruiz
- the Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48823, and
| | - Stacy L Hovde
- the Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48823, and
| | - Orrin J Neitzke
- the Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48823, and
| | - Jack D Griffith
- the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Laurie S Kaguni
- From the Institute of Biosciences and Medical Technology, University of Tampere, 33520 Tampere, Finland, the Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48823, and
| |
Collapse
|
8
|
Oliveira MT, Kaguni LS. Reduced stimulation of recombinant DNA polymerase γ and mitochondrial DNA (mtDNA) helicase by variants of mitochondrial single-stranded DNA-binding protein (mtSSB) correlates with defects in mtDNA replication in animal cells. J Biol Chem 2011; 286:40649-58. [PMID: 21953457 DOI: 10.1074/jbc.m111.289983] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial single-stranded DNA-binding protein (mtSSB) is believed to coordinate the functions of DNA polymerase γ (pol γ) and the mitochondrial DNA (mtDNA) helicase at the mtDNA replication fork. We generated five variants of the human mtSSB bearing mutations in amino acid residues specific to metazoans that map on the protein surface, removed from the single-stranded DNA (ssDNA) binding groove. Although the mtSSB variants bound ssDNA with only slightly different affinities, they exhibited distinct capacities to stimulate the DNA polymerase activity of human pol γ and the DNA unwinding activity of human mtDNA helicase in vitro. Interestingly, we observed that the variants with defects in stimulating pol γ had unaltered capacities to stimulate the mtDNA helicase; at the same time, variants showing reduced stimulation of the mtDNA helicase activity promoted DNA synthesis by pol γ similarly to the wild-type mtSSB. The overexpression of the equivalent variants of Drosophila melanogaster mtSSB in S2 cells in culture caused mtDNA depletion under conditions of mitochondrial homeostasis. Furthermore, we observed more severe reduction of mtDNA copy number upon expression of these proteins during recovery from treatment with ethidium bromide, when mtDNA replication is stimulated in vivo. Our findings suggest that mtSSB uses distinct structural elements to interact functionally with its mtDNA replisome partners and to promote proper mtDNA replication in animal cells.
Collapse
Affiliation(s)
- Marcos T Oliveira
- Department of Biochemistry and Molecular Biology, Center for Mitochondrial Science and Medicine, and Graduate Program in Genetics, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | |
Collapse
|
9
|
Population genetics of the cytoplasm and the units of selection on mitochondrial DNA in Drosophila melanogaster. Genetica 2011; 139:685-97. [PMID: 21538136 DOI: 10.1007/s10709-011-9576-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 04/15/2011] [Indexed: 02/03/2023]
Abstract
Biological variation exists across a nested set of hierarchical levels from nucleotides within genes to populations within species to lineages within the tree of life. How selection acts across this hierarchy is a long-standing question in evolutionary biology. Recent studies have suggested that genome size is influenced largely by the balance of selection, mutation and drift in lineages with different population sizes. Here we use population cage and maternal transmission experiments to identify the relative strength of selection at an individual and cytoplasmic level. No significant trends were observed in the frequency of large (L) and small (S) mtDNAs across 14 generations in population cages. In all replicate cages, new length variants were observed in heteroplasmic states indicating that spontaneous length mutations occurred in these experimental populations. Heteroplasmic flies carrying L genomes were more frequent than those carrying S genomes suggesting an asymmetric mutation dynamic from larger to smaller mtDNAs. Mother-offspring transmission of heteroplasmy showed that the L mtDNA increased in frequency within flies both between and within generations despite sampling drift of the same intensity as occurred in population cages. These results suggest that selection for mtDNA size is stronger at the cytoplasmic than at the organismal level. The fixation of novel mtDNAs within and between species requires a transient intracellular heteroplasmic stage. The balance of population genetic forces at the cytoplasmic and individual levels governs the units of selection on mtDNA, and has implications for evolutionary inference as well as for the effects of mtDNA mutations on fitness, disease and aging.
Collapse
|
10
|
Oliveira MT, Kaguni LS. Functional roles of the N- and C-terminal regions of the human mitochondrial single-stranded DNA-binding protein. PLoS One 2010; 5:e15379. [PMID: 21060847 PMCID: PMC2965674 DOI: 10.1371/journal.pone.0015379] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/31/2010] [Indexed: 12/31/2022] Open
Abstract
Biochemical studies of the mitochondrial DNA (mtDNA) replisome demonstrate that the mtDNA polymerase and the mtDNA helicase are stimulated by the mitochondrial single-stranded DNA-binding protein (mtSSB). Unlike Escherichia coli SSB, bacteriophage T7 gp2.5 and bacteriophage T4 gp32, mtSSBs lack a long, negatively charged C-terminal tail. Furthermore, additional residues at the N-terminus (notwithstanding the mitochondrial presequence) are present in the sequence of species across the animal kingdom. We sought to analyze the functional importance of the N- and C-terminal regions of the human mtSSB in the context of mtDNA replication. We produced the mature wild-type human mtSSB and three terminal deletion variants, and examined their physical and biochemical properties. We demonstrate that the recombinant proteins adopt a tetrameric form, and bind single-stranded DNA with similar affinities. They also stimulate similarly the DNA unwinding activity of the human mtDNA helicase (up to 8-fold). Notably, we find that unlike the high level of stimulation that we observed previously in the Drosophila system, stimulation of DNA synthesis catalyzed by human mtDNA polymerase is only moderate, and occurs over a narrow range of salt concentrations. Interestingly, each of the deletion variants of human mtSSB stimulates DNA synthesis at a higher level than the wild-type protein, indicating that the termini modulate negatively functional interactions with the mitochondrial replicase. We discuss our findings in the context of species-specific components of the mtDNA replisome, and in comparison with various prokaryotic DNA replication machineries.
Collapse
Affiliation(s)
- Marcos T. Oliveira
- Department of Biochemistry and Molecular Biology, Center for Mitochondrial Science and Medicine, and Graduate Program in Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Laurie S. Kaguni
- Department of Biochemistry and Molecular Biology, Center for Mitochondrial Science and Medicine, and Graduate Program in Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|