1
|
Sirasunthorn N, Jailwala A, Gerber A, Comstock LR. Evaluation of
N
‐Mustard Analogues of
S
‐Adenosyl‐L‐methionine with Eukaryotic DNA Methyltransferase 1. ChemistrySelect 2019. [DOI: 10.1002/slct.201902940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Nichanun Sirasunthorn
- Department of Chemistry Wake Forest University 455 Vine Street Winston-Salem NC 27101–4135 USA
| | - Anuj Jailwala
- Department of Chemistry Wake Forest University 455 Vine Street Winston-Salem NC 27101–4135 USA
| | - Anna Gerber
- Department of Chemistry Wake Forest University 455 Vine Street Winston-Salem NC 27101–4135 USA
| | - Lindsay R. Comstock
- Department of Chemistry Wake Forest University 455 Vine Street Winston-Salem NC 27101–4135 USA
| |
Collapse
|
2
|
Soozangar N, Sadeghi MR, Jeddi F, Somi MH, Shirmohamadi M, Samadi N. Comparison of genome‐wide analysis techniques to DNA methylation analysis in human cancer. J Cell Physiol 2017; 233:3968-3981. [DOI: 10.1002/jcp.26176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Narges Soozangar
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
- Molecular Medicine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad R. Sadeghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Farhad Jeddi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Mohammad H. Somi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Nasser Samadi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
- Department of Biochemistry, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
3
|
Xin C, Hou R, Wu F, Zhao Y, Xiao H, Si W, Ali ME, Cai L, Guo J. Analysis of cytosine methylation status in potato by methylation-sensitive amplified polymorphisms under low-temperature stress. JOURNAL OF PLANT BIOLOGY 2015; 58:383-390. [DOI: 10.1007/s12374-015-0316-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
Pilozzi E, Maresca C, Duranti E, Giustiniani MC, Catalanotto C, Lucarelli M, Cogoni C, Ferri M, Ruco L, Zardo G. Left-sided early-onset vs late-onset colorectal carcinoma: histologic, clinical, and molecular differences. Am J Clin Pathol 2015; 143:374-84. [PMID: 25696795 DOI: 10.1309/ajcpnoc55iolxfud] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Carcinomas of the left colon represent a neoplasm of older patients (late onset), but epidemiologic evidence has been showing an increasing incidence in patients 50 years or younger (early onset). In this study, we investigate pathologic and molecular features of early- and late-onset carcinoma of the left colon. METHODS We selected 22 patients 50 years or younger and 21 patients 70 years or older with left-sided colorectal carcinoma (CRC). All samples were evaluated for pathologic features, microsatellite instability, and KRAS and BRAF mutations. Moreover, both groups were analyzed to identify CpG island methylator phenotype features and assessed with restriction landmark genome scanning (RLGS) to unveil differential DNA methylation patterns. RESULTS Early-onset patients had advanced pathologic stages compared with late-onset patients (P = .0482). All cases showed a microsatellite stable profile and BRAF wild-type sequence. Early-onset patients (43%) more frequently had mutations at KRAS codon 12 compared with late-onset patients (14%) (P =.0413). RLGS showed that patients younger than 50 years who had CRC had a significantly lower percentage of methylated loci than did patients 70 years or older (P = .04124), and differential methylation of several genomic loci was observed in the two groups. CONCLUSIONS Our results suggest that left-sided CRCs may present differential patterns of aberrant DNA methylation when they are separated by age.
Collapse
Affiliation(s)
- Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “La Sapienza,” Rome, Italy
| | - Carmen Maresca
- Department of Cellular Biotechnologies and Hematology, University of Rome “La Sapienza”, Rome, Italy
| | - Enrico Duranti
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “La Sapienza,” Rome, Italy
| | | | - Caterina Catalanotto
- Department of Cellular Biotechnologies and Hematology, University of Rome “La Sapienza”, Rome, Italy
| | - Marco Lucarelli
- Department of Cellular Biotechnologies and Hematology, University of Rome “La Sapienza”, Rome, Italy
| | - Carlo Cogoni
- Department of Cellular Biotechnologies and Hematology, University of Rome “La Sapienza”, Rome, Italy
| | - Mario Ferri
- Department of Medical-Surgical Sciences and Translation Medicine, Sant’Andrea Hospital, University of Rome “La Sapienza,” Rome, Italy
| | - Luigi Ruco
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “La Sapienza,” Rome, Italy
| | - Giuseppe Zardo
- Department of Cellular Biotechnologies and Hematology, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
5
|
Couldrey C, Cave V. Assessing DNA methylation levels in animals: choosing the right tool for the job. Anim Genet 2014; 45 Suppl 1:15-24. [PMID: 24990588 DOI: 10.1111/age.12186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2013] [Indexed: 12/16/2022]
Abstract
Selection of agricultural animals for improved performance based on genetics has seen significant progress made over the past few decades. Further improvements are likely by combining genetic selection with epigenetic selection or manipulation. However, before this can be undertaken, an understanding of epigenetic mechanisms is required, and this can be obtained only by precise and accurate analysis of epigenetic patterns. Even when one only considers a single epigenetic modification such as DNA methylation, the last 10 years have seen a wide array of technologies developed. For scientists whose primary training is in a field other than epigenetics, the choices can be confusing, and it can be challenging to determine which technology is best for the task at hand. There are many factors to take into consideration before beginning analysis of DNA methylation in animals. It is crucial that the most appropriate tools are selected to ensure that the best possible results are achieved. This review provides an overview of the most common methods of analysing DNA methylation in animals, when they are appropriate, what resolution of information they can provide and what their limitations are.
Collapse
Affiliation(s)
- Christine Couldrey
- Animal Productivity, AgResearch Ruakura Research Centre, 10 Bisley Road, Hamilton, 3214, New Zealand
| | | |
Collapse
|
6
|
Song S, Walter V, Karaca M, Li Y, Bartlett CS, Smiraglia DJ, Serber D, Sproul CD, Plass C, Zhang J, Hayes DN, Zheng Y, Weissman BE. Gene silencing associated with SWI/SNF complex loss during NSCLC development. Mol Cancer Res 2014; 12:560-70. [PMID: 24445599 DOI: 10.1158/1541-7786.mcr-13-0427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED The SWI/SNF chromatin-remodeling complex regulates gene expression and alters chromatin structures in an ATP-dependent manner. Recent sequencing efforts have shown mutations in BRG1 (SMARCA4), one of two mutually exclusive ATPase subunits in the complex, in a significant number of human lung tumor cell lines and primary non-small cell lung carcinoma (NSCLC) clinical specimens. To determine how BRG1 loss fuels tumor progression in NSCLC, molecular profiling was performed after restoration of BRG1 expression or treatment with a histone deacetylase inhibitor or a DNA methyltransferase (DNMT) inhibitor in a BRG1-deficient NSCLC cells. Importantly, validation studies from multiple cell lines revealed that BRG1 reexpression led to substantial changes in the expression of CDH1, CDH3, EHF, and RRAD that commonly undergo silencing by other epigenetic mechanisms during NSCLC development. Furthermore, treatment with DNMT inhibitors did not restore expression of these transcripts, indicating that this common mechanism of gene silencing did not account for their loss of expression. Collectively, BRG1 loss is an important mechanism for the epigenetic silencing of target genes during NSCLC development. IMPLICATIONS Inactivation of the SWI/SNF complex provides a novel mechanism to induce gene silencing during NSCLC development.
Collapse
Affiliation(s)
- Shujie Song
- Lineberger Cancer Center, Room 32-048, University of North Carolina, Chapel Hill, NC 27599-7295.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Umer M, Herceg Z. Deciphering the epigenetic code: an overview of DNA methylation analysis methods. Antioxid Redox Signal 2013; 18:1972-86. [PMID: 23121567 PMCID: PMC3624772 DOI: 10.1089/ars.2012.4923] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Methylation of cytosine in DNA is linked with gene regulation, and this has profound implications in development, normal biology, and disease conditions in many eukaryotic organisms. A wide range of methods and approaches exist for its identification, quantification, and mapping within the genome. While the earliest approaches were nonspecific and were at best useful for quantification of total methylated cytosines in the chunk of DNA, this field has seen considerable progress and development over the past decades. RECENT ADVANCES Methods for DNA methylation analysis differ in their coverage and sensitivity, and the method of choice depends on the intended application and desired level of information. Potential results include global methyl cytosine content, degree of methylation at specific loci, or genome-wide methylation maps. Introduction of more advanced approaches to DNA methylation analysis, such as microarray platforms and massively parallel sequencing, has brought us closer to unveiling the whole methylome. CRITICAL ISSUES Sensitive quantification of DNA methylation from degraded and minute quantities of DNA and high-throughput DNA methylation mapping of single cells still remain a challenge. FUTURE DIRECTIONS Developments in DNA sequencing technologies as well as the methods for identification and mapping of 5-hydroxymethylcytosine are expected to augment our current understanding of epigenomics. Here we present an overview of methodologies available for DNA methylation analysis with special focus on recent developments in genome-wide and high-throughput methods. While the application focus relates to cancer research, the methods are equally relevant to broader issues of epigenetics and redox science in this special forum.
Collapse
Affiliation(s)
- Muhammad Umer
- Epigenetics Group, International Agency for Research on Cancer IARC, Lyon 69008, France
| | | |
Collapse
|
8
|
Park JY, Kim D, Yang M, Park HY, Lee SH, Rincon M, Kreahling J, Plass C, Smiraglia DJ, Tockman MS, Kim SJ. Gene silencing of SLC5A8 identified by genome-wide methylation profiling in lung cancer. Lung Cancer 2012; 79:198-204. [PMID: 23273563 DOI: 10.1016/j.lungcan.2012.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 01/29/2023]
Abstract
BACKGROUND Aberrant DNA hypermethylation has been implicated as a component of an epigenetic mechanism that silences genes in cancers. METHODS We performed a genome-wide search to identify differentially methylated loci between 26 tumor and adjacent non-tumor paired tissues from same lung cancer patients using restriction landmark genomic scanning (RLGS) analysis. Among 229 loci which were hypermethylated in lung tumors as compared to adjacent non-tumor tissues, solute carrier family 5, member 8 (SLC5A8) was one of the hypermethylated genes, and known as a tumor suppressor gene which is silenced by epigenetic changes in various tumors. We investigated the significance of DNA methylation in SLC5A8 expression in lung cancer cell lines, and 23 paired tumor and adjacent non-tumor lung tissues by reverse transcription-PCR (RT-PCR), quantitative methylation specific PCR (QMSP) and bisulfite modified DNA sequencing analyses. RESULTS Reduced or lost expression of SLC5A8 was observed in 39.1% (9/23) of the tumor tissues as compared with paired adjacent non-tumor tissues. Bisulfite sequencing results of lung cancer cell lines and tissues which did not express SLC5A8 showed a densely methylated promoter region of SLC5A8. SLC5A8 was reactivated by treatment with DNA methyltransferase inhibitor, 5-Aza and/or HDAC inhibitor, trichostatin A (TSA) in lung cancer cell lines, which did not express SLC5A8. Hypermethylation was detected at the promoter region of SLC5A8 in primary lung tumor tissues as compared with adjacent non-tumor tissues (14/23, 60.9%). CONCLUSION These results suggest that DNA methylation in the SLC5A8 promoter region may suppress the expression of SLC5A8 in lung tumor.
Collapse
Affiliation(s)
- Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The haploid human genome contains approximately 29 million CpGs that exist in a methylated, hydroxymethylated or unmethylated state, collectively referred to as the DNA methylome. The methylation status of cytosines in CpGs and occasionally in non-CpG cytosines influences protein–DNA interactions, gene expression, and chromatin structure and stability. The degree of DNA methylation at particular loci may be heritable transgenerationally and may be altered by environmental exposures and diet, potentially contributing to the development of human diseases. For the vast majority of normal and disease methylomes however, less than 1% of the CpGs have been assessed, revealing the formative stage of methylation mapping techniques. Thus, there is significant discovery potential in new genome-scale platforms applied to methylome mapping, particularly oligonucleotide arrays and the transformative technology of next-generation sequencing. Here, we outline the currently used methylation detection reagents and their application to microarray and sequencing platforms. A comparison of the emerging methods is presented, highlighting their degrees of technical complexity, methylome coverage and precision in resolving methylation. Because there are hundreds of unique methylomes to map within one individual and interindividual variation is likely to be significant, international coordination is essential to standardize methylome platforms and to create a full repository of methylome maps from tissues and unique cell types.
Collapse
Affiliation(s)
- Shaun D Fouse
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
10
|
Unterberger A, Dubuc AM, Taylor MD. Genome-wide methylation analysis. Methods Mol Biol 2012; 863:303-317. [PMID: 22359302 DOI: 10.1007/978-1-61779-612-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The disruption and alteration of genomic methylation patterns is a hallmark of cancer and other disease states. Understanding and characterizing genome-wide methylation will have a profound effect on our understanding of tumorigenesis and provide novel avenues for therapy. This chapter serves to describe techniques that examine genome-wide methylation patterns including luminometric methylation assay, restriction landmark genome scanning, and the cytosine extension assay, which utilize methylation-sensitive restriction enzymes. Additional techniques such as nucleotide separation assays (nearest neighbor analysis and high-performance capillary electrophoresis) and the infinium methylation assay are discussed. These techniques allow for the determination of changes in global methylation levels, as well as regional changes in methylation throughout the genome.
Collapse
|
11
|
Schulz WA, Goering W. Eagles report: Developing cancer biomarkers from genome-wide DNA methylation analyses. World J Clin Oncol 2011; 2:1-7. [PMID: 21603310 PMCID: PMC3095465 DOI: 10.5306/wjco.v2.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 08/26/2010] [Accepted: 09/02/2010] [Indexed: 02/06/2023] Open
Abstract
Analyses of DNA methylation in human cancers have identified hypermethylation of individual genes and diminished methylation at repeat elements as common alterations, and have thereby provided important mechanistic insights into cancer biology as well as biomarkers for cancer detection, prognosis and prediction of therapy responses. The techniques available in the past were best suited for investigations of individual candidate genes and sequences, whereas recently developed high-throughput techniques promise to generate unbiased and comprehensive surveys of DNA methylation states across entire genomes. In this minireview we give a short overview of established and novel techniques and outline some major questions that can now be addressed to develop further cancer biomarkers and therapies based on DNA methylation.
Collapse
Affiliation(s)
- Wolfgang A Schulz
- Wolfgang A Schulz, Wolfgang Goering, Department of Urology, Medical Faculty, Heinrich Heine University, 40225 Duesseldorf, Germany
| | | |
Collapse
|
12
|
Deciphering squamous cell carcinoma using multidimensional genomic approaches. J Skin Cancer 2010; 2011:541405. [PMID: 21234096 PMCID: PMC3017908 DOI: 10.1155/2011/541405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/26/2010] [Indexed: 12/04/2022] Open
Abstract
Squamous cell carcinomas (SqCCs) arise in a wide range of tissues including skin, lung, and oral mucosa. Although all SqCCs are epithelial in origin and share common nomenclature, these cancers differ greatly with respect to incidence, prognosis, and treatment. Current knowledge of genetic similarities and differences between SqCCs is insufficient to describe the biology of these cancers, which arise from diverse tissue origins. In this paper we provide a general overview of whole genome approaches for gene and pathway discovery and highlight the advancement of integrative genomics as a state-of-the-art technology in the study of SqCC genetics.
Collapse
|
13
|
Martinez-Arguelles DB, Papadopoulos V. Epigenetic regulation of the expression of genes involved in steroid hormone biosynthesis and action. Steroids 2010; 75:467-76. [PMID: 20156469 PMCID: PMC2860648 DOI: 10.1016/j.steroids.2010.02.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/16/2010] [Accepted: 02/08/2010] [Indexed: 11/26/2022]
Abstract
Steroid hormones participate in organ development, reproduction, body homeostasis, and stress responses. The steroid machinery is expressed in a development- and tissue-specific manner, with the expression of these factors being tightly regulated by an array of transcription factors (TFs). Epigenetics provides an additional layer of gene regulation through DNA methylation and histone tail modifications. Evidence of epigenetic regulation of key steroidogenic enzymes is increasing, though this does not seem to be a predominant regulatory pathway. Steroid hormones exert their action in target tissues through steroid nuclear receptors belonging to the NR3A and NR3C families. Nuclear receptor expression levels and post-translational modifications regulate their function and dictate their sensitivity to steroid ligands. Nuclear receptors and TFs are more likely to be epigenetically regulated than proteins involved in steroidogenesis and have secondary impact on the expression of these steroidogenic enzymes. Here we review evidence for epigenetic regulation of enzymes, transcription factors, and nuclear receptors related to steroid biogenesis and action.
Collapse
Affiliation(s)
- Daniel B. Martinez-Arguelles
- Department of Biochemistry & Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, United States
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Vassilios Papadopoulos
- Department of Biochemistry & Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, United States
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Departments of Medicine, Pharmacology & Therapeutics, and Biochemistry, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Corresponding author at: The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Room C10-148, Montreal, Quebec H3G 1A4, Canada. Tel: 514-934-1934 ext. 44580. Fax: 514-934-8439.
| |
Collapse
|
14
|
Martinez R, Esteller M. The DNA methylome of glioblastoma multiforme. Neurobiol Dis 2010; 39:40-6. [DOI: 10.1016/j.nbd.2009.12.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/21/2009] [Accepted: 12/30/2009] [Indexed: 12/14/2022] Open
|
15
|
Poage GM, Christensen BC, Houseman EA, McClean MD, Wiencke JK, Posner MR, Clark JR, Nelson HH, Marsit CJ, Kelsey KT. Genetic and epigenetic somatic alterations in head and neck squamous cell carcinomas are globally coordinated but not locally targeted. PLoS One 2010; 5:e9651. [PMID: 20300172 PMCID: PMC2836370 DOI: 10.1371/journal.pone.0009651] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/17/2010] [Indexed: 01/22/2023] Open
Abstract
Background Solid tumors, including head and neck squamous cell carcinomas (HNSCC), arise as a result of genetic and epigenetic alterations in a sustained stress environment. Little work has been done that simultaneously examines the spectrum of both types of changes in human tumors on a genome-wide scale and results so far have been limited and mixed. Since it has been hypothesized that epigenetic alterations may act by providing the second carcinogenic hit in gene silencing, we sought to identify genome-wide DNA copy number alterations and CpG dinucleotide methylation events and examine the global/local relationships between these types of alterations in HNSCC. Methodology/Principal Findings We have extended a prior analysis of 1,413 cancer-associated loci for epigenetic changes in HNSCC by integrating DNA copy number alterations, measured at 500,000 polymorphic loci, in a case series of 19 primary HNSCC tumors. We have previously demonstrated that local copy number does not bias methylation measurements in this array platform. Importantly, we found that the global pattern of copy number alterations in these tumors was significantly associated with tumor methylation profiles (p<0.002). However at the local level, gene promoter regions did not exhibit a correlation between copy number and methylation (lowest q = 0.3), and the spectrum of genes affected by each type of alteration was unique. Conclusion/Significance This work, using a novel and robust statistical approach demonstrates that, although a “second hit” mechanism is not likely the predominant mode of action for epigenetic dysregulation in cancer, the patterns of methylation events are associated with the patterns of allele loss. Our work further highlights the utility of integrative genomics approaches in exploring the driving somatic alterations in solid tumors.
Collapse
Affiliation(s)
- Graham M Poage
- Departments of Molecular Pharmacology and Physiology, Brown University, Providence, Rhode Island, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The application of restriction landmark genome scanning method for surveillance of non-mendelian inheritance in f(1) hybrids. Comp Funct Genomics 2010:245927. [PMID: 20148066 PMCID: PMC2817499 DOI: 10.1155/2009/245927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 08/29/2009] [Accepted: 10/26/2009] [Indexed: 12/03/2022] Open
Abstract
We analyzed inheritance of DNA methylation in reciprocal F1 hybrids (subsp. japonica cv. Nipponbare × subsp. indica cv. Kasalath) of rice (Oryza sativa L.) using restriction landmark genome scanning (RLGS), and detected differing RLGS spots between the parents and reciprocal F1 hybrids. MspI/HpaII restriction sites in the DNA from these different spots were suspected to be heterozygously methylated in the Nipponbare parent. These spots segregated in F1 plants, but did not segregate in selfed progeny of Nipponbare, showing non-Mendelian inheritance of the methylation status. As a result of RT-PCR and sequencing, a specific allele of the gene nearest to the methylated sites was expressed in reciprocal F1 plants, showing evidence of biased allelic expression. These results show the applicability of RLGS for scanning of non-Mendelian inheritance of DNA methylation and biased allelic expression.
Collapse
|