1
|
da Fonseca IIM, Nagamine MK, Gentile LB, Nishiya AT, da Fonseca JM, de Oliveira Massoco C, Ward JM, Liu S, Leppla SH, Dagli MLZ. Targeting canine mammary neoplastic epithelial cells with a reengineered anthrax toxin: first study. Vet Res Commun 2024; 48:2407-2428. [PMID: 38805149 DOI: 10.1007/s11259-024-10400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Mammary tumors are the most frequent type of neoplasms in intact female dogs. New therapies that target neoplastic cells without affecting normal cells are highly sought. The Bacillus anthracis toxin has been reengineered to target tumor cells that express urokinase plasminogen activators and metalloproteinases. In previous studies carried out in our laboratory, the reengineered anthrax toxin had inhibitory effects on canine oral mucosal melanoma and canine osteosarcoma cells. In this study, five canine neoplastic epithelial cell lines (four adenocarcinomas and one adenoma) and one non-neoplastic canine mammary epithelial cell line were treated with different concentrations of reengineered anthrax toxin components. Cell viability was quantified using an MTT assay and half-maximal inhibitory concentration (IC50) values. Cell lines were considered sensitive when the IC50 was lower than 5000 ng/ml. One canine mammary adenocarcinoma cell line and one mammary adenoma cell line showed significantly decreased viability after treatment, whereas the non-neoplastic cell line was resistant. We conclude that the reengineered anthrax toxin may be considered a targeted therapy for canine mammary neoplasms while preserving normal canine mammary epithelial cells.
Collapse
Affiliation(s)
- Ivone Izabel Mackowiak da Fonseca
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Márcia Kazumi Nagamine
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Luciana Boffoni Gentile
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Adriana Tomoko Nishiya
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Jonathan Mackowiak da Fonseca
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | - Cristina de Oliveira Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil
| | | | - Shihui Liu
- Aging Institute and Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Stephen Howard Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, 05508-270, Brazil.
| |
Collapse
|
2
|
Mackowiak da Fonseca J, Mackowiak da Fonseca II, Nagamine MK, Massoco CDO, Nishiya AT, Ward JM, Liu S, Leppla SH, Bugge TH, Dagli MLZ. Inhibitory Effects of a Reengineered Anthrax Toxin on Canine and Human Osteosarcoma Cells. Toxins (Basel) 2020; 12:toxins12100614. [PMID: 32987941 PMCID: PMC7601267 DOI: 10.3390/toxins12100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/03/2022] Open
Abstract
Canine and human osteosarcomas (OSA) share similarities. Novel therapies are necessary for these tumours. The Bacillus anthracis toxin was reengineered to target and kill cells with high expressions of matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA). Since canine OSA express MMPs and uPA, we assessed whether the reengineered toxin could show efficacy against these tumours. Two OSA cell lines (canine D17 and human MG63) and a non-neoplastic canine osteoblastic cell line (COBS) were used. Cells were treated with different concentrations of the reengineered anthrax toxin and cell viability was quantified using MTT assay. The cell cycle, apoptosis, and necrosis were analysed by flow cytometry. The wound-healing assay was performed to quantify the migration capacity of treated cells. D17 and MG63 cells had significantly decreased viability after 24 h of treatment. Cell cycle analysis revealed that OSA cells underwent apoptosis when treated with the toxin, whereas COBS cells arrested in the G1 phase. The wound-healing assay showed that D17 and MG63 cells had a significantly reduced migration capacity after treatment. These results point for the first time towards the in vitro inhibitory effects of the reengineered anthrax toxin on OSA cells; this reengineered toxin could be further tested as a new therapy for OSA.
Collapse
Affiliation(s)
- Jonathan Mackowiak da Fonseca
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.M.d.F.); (I.I.M.d.F.); (M.K.N.); (C.d.O.M.); (A.T.N.)
| | - Ivone Izabel Mackowiak da Fonseca
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.M.d.F.); (I.I.M.d.F.); (M.K.N.); (C.d.O.M.); (A.T.N.)
| | - Marcia Kazumi Nagamine
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.M.d.F.); (I.I.M.d.F.); (M.K.N.); (C.d.O.M.); (A.T.N.)
| | - Cristina de Oliveira Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.M.d.F.); (I.I.M.d.F.); (M.K.N.); (C.d.O.M.); (A.T.N.)
| | - Adriana Tomoko Nishiya
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.M.d.F.); (I.I.M.d.F.); (M.K.N.); (C.d.O.M.); (A.T.N.)
| | | | - Shihui Liu
- Aging Institute and Division of Infectious Diseases, Department of Medicine, University of Pittsburg, Pittsburgh, PA 15261, USA;
| | - Stephen Howard Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Thomas Henrik Bugge
- Proteases & Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA;
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.M.d.F.); (I.I.M.d.F.); (M.K.N.); (C.d.O.M.); (A.T.N.)
- Correspondence: ; Tel.: +55-11-30917712
| |
Collapse
|
3
|
Gholami M, Moghbeli M, Kafilzadeh F, Kargar M, Torbati MB, Tavizi A, Bellevile S, Hatami J, Eslami Z. Production of recombinant lethal factor of Bacillus anthracis in Bacillus subtilis. Prep Biochem Biotechnol 2020; 51:9-15. [PMID: 32393098 DOI: 10.1080/10826068.2020.1762215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cancer is considered as a disease with high rates of mortality and morbidity. The limitations and side effects of common treatments have prompted the need for innovative cancer therapies. Furthermore, selectivity and targeting of cancer cells are crucial factors to successful treatment of cancer. One of these methods is the use of bacterial toxins including Bacillus anthracis toxin to aid cancer therapy. This toxin is composed of three polypeptides: protective factor (PA), lethal factor (LF), and edema factor (EF). PA can bind to various surface receptors of all types of human cells and it internalizes the lethal factor and edema factor subunits of the toxin in the cytosol. In the present study, we cloned and expressed the lef gene of B. anthracis as the lethal part of the toxin in Bacillus subtilis WB600 by a shuttle expression vector PHT4. The rLF made in B. subtilis is efficiently secreted by the host into the culture medium which facilitates downstream processing. The rLF can be used to study cancer treatment. Abbreviations: EF: edema factor; LF: lethal factor; PA: protective factor; rLF: recombinant lethal factor; rPAm: recombinant protective factor mutants; uPA: urokinase-type plasminogen activator; uPAR: urokinase-type plasminogen activator receptor.
Collapse
Affiliation(s)
| | - Majid Moghbeli
- Department of Biology, Islamic Azad University, Damghan, Iran
| | | | - Mohammad Kargar
- Department of Microbiology, Islamic Azad University, Jahrom, Iran
| | | | | | | | - Javad Hatami
- Department of Education, Tarbiat Modares University, Tehran, Iran
| | - Zahra Eslami
- ALHSB Health Research Institute, Cleveland, OH, USA
| |
Collapse
|
4
|
Nishiya AT, Nagamine MK, da Fonseca IIM, Miraldo AC, Villar Scattone N, Guerra JL, Xavier JG, Santos M, Massoco de Salles Gomes CO, Ward JM, Liu S, Leppla SH, Bugge TH, Dagli MLZ. Inhibitory Effects of a Reengineered Anthrax Toxin on Canine Oral Mucosal Melanomas. Toxins (Basel) 2020; 12:toxins12030157. [PMID: 32121654 PMCID: PMC7150776 DOI: 10.3390/toxins12030157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Canine oral mucosal melanomas (OMM) are the most common oral malignancy in dogs and few treatments are available. Thus, new treatment modalities are needed for this disease. Bacillus anthracis (anthrax) toxin has been reengineered to target tumor cells that express urokinase plasminogen activator (uPA) and metalloproteinases (MMP-2), and has shown antineoplastic effects both, in vitro and in vivo. This study aimed to evaluate the effects of a reengineered anthrax toxin on canine OMM. Five dogs bearing OMM without lung metastasis were included in the clinical study. Tumor tissue was analyzed by immunohistochemistry for expression of uPA, uPA receptor, MMP-2, MT1-MMP and TIMP-2. Animals received either three or six intratumoral injections of the reengineered anthrax toxin prior to surgical tumor excision. OMM samples from the five dogs were positive for all antibodies. After intratumoral treatment, all dogs showed stable disease according to the canine Response Evaluation Criteria in Solid Tumors (cRECIST), and tumors had decreased bleeding. Histopathology has shown necrosis of tumor cells and blood vessel walls after treatment. No significant systemic side effects were noted. In conclusion, the reengineered anthrax toxin exerted inhibitory effects when administered intratumorally, and systemic administration of this toxin is a promising therapy for canine OMM.
Collapse
Affiliation(s)
- Adriana Tomoko Nishiya
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
| | - Marcia Kazumi Nagamine
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
| | - Ivone Izabel Mackowiak da Fonseca
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
| | - Andrea Caringi Miraldo
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
| | - Nayra Villar Scattone
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
| | - José Luiz Guerra
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
| | - José Guilherme Xavier
- Rous Animal Pathology, Private Veterinary Pathology Services. Av. Lacerda Franco 127, Sao Paulo 01536-000, SP, Brazil; (J.G.X.); (M.S.)
| | - Mário Santos
- Rous Animal Pathology, Private Veterinary Pathology Services. Av. Lacerda Franco 127, Sao Paulo 01536-000, SP, Brazil; (J.G.X.); (M.S.)
| | - Cristina Oliveira Massoco de Salles Gomes
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
| | | | - Shihui Liu
- Aging Institute and Division of Infectious Diseases, Department of Medicine, University of Pittsburg, Pittsburgh, PA 15261, USA;
| | - Stephen Howard Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Thomas Henrik Bugge
- Proteases & Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA;
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (A.T.N.); (M.K.N.); (I.I.M.d.F.); (A.C.M.); (N.V.S.); (J.L.G.); (C.O.M.d.S.G.)
- Correspondence:
| |
Collapse
|
5
|
The Fibrinolytic System in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Hu H, Leppla SH. Anthrax toxin uptake by primary immune cells as determined with a lethal factor-beta-lactamase fusion protein. PLoS One 2009; 4:e7946. [PMID: 19956758 PMCID: PMC2775957 DOI: 10.1371/journal.pone.0007946] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/27/2009] [Indexed: 12/28/2022] Open
Abstract
Background To initiate infection, Bacillus anthracis needs to overcome the host innate immune system. Anthrax toxin, a major virulence factor of B. anthracis, impairs both the innate and adaptive immune systems and is important in the establishment of anthrax infections. Methodology/Principal Findings To measure the ability of anthrax toxin to target immune cells, studies were performed using a fusion of the anthrax toxin lethal factor (LF) N-terminal domain (LFn, aa 1–254) with β-lactamase (LFnBLA). This protein reports on the ability of the anthrax toxin protective antigen (PA) to mediate LF delivery into cells. Primary immune cells prepared from mouse spleens were used in conjunction with flow cytometry to assess cleavage and resulting FRET disruption of a fluorescent β-lactamase substrate, CCF2/AM. In spleen cell suspensions, the macrophages, dendritic cells, and B cells showed about 75% FRET disruption of CCF2/AM due to cleavage by the PA–delivered LFnBLA. LFnBLA delivery into CD4+ and CD8+ T cells was lower, with 40% FRET disruption. When the analyses were done on purified samples of individual cell types, similar results were obtained, with T cells again having lower LFnBLA delivery than macrophages, dendritic cells, and B cells. Relative expression levels of the toxin receptors CMG2 and TEM8 on these cells were determined by real-time PCR. Expression of CMG2 was about 1.5-fold higher in CD8+ cells than in CD4+ and B cells, and 2.5-fold higher than in macrophages. Conclusions/Significance Anthrax toxin entry and activity differs among immune cells. Macrophages, dendritic cells, and B cells displayed higher LFnBLA activity than CD4+ and CD8+ T cells in both spleen cell suspension and the purified samples of individual cell types. Expression of anthrax toxin receptor CMG2 is higher in CD4+ and CD8+ T cells, which is not correlated to the intracellular LFnBLA activity.
Collapse
Affiliation(s)
- Haijing Hu
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen H. Leppla
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|