1
|
Mekkaoui F, Drewell RA, Dresch JM, Spratt DE. Experimental approaches to investigate biophysical interactions between homeodomain transcription factors and DNA. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195074. [PMID: 39644990 PMCID: PMC11832328 DOI: 10.1016/j.bbagrm.2024.195074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Homeodomain transcription factors (TFs) bind to specific DNA sequences to regulate the expression of target genes. Structural work has provided insight into molecular identities and aided in unraveling structural features of these TFs. However, the detailed affinity and specificity by which these TFs bind to DNA sequences is still largely unknown. Qualitative methods, such as DNA footprinting, Electrophoretic Mobility Shift Assays (EMSAs), Systematic Evolution of Ligands by Exponential Enrichment (SELEX), Bacterial One Hybrid (B1H) systems, Surface Plasmon Resonance (SPR), and Protein Binding Microarrays (PBMs) have been widely used to investigate the biochemical characteristics of TF-DNA binding events. In addition to these qualitative methods, bioinformatic approaches have also assisted in TF binding site discovery. Here we discuss the advantages and limitations of these different approaches, as well as the benefits of utilizing more quantitative approaches, such as Mechanically Induced Trapping of Molecular Interactions (MITOMI), Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC), in determining the biophysical basis of binding specificity of TF-DNA complexes and improving upon existing computational approaches aimed at affinity predictions.
Collapse
Affiliation(s)
- Fadwa Mekkaoui
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, United States of America.
| |
Collapse
|
2
|
Koeller KJ, Harris GD, Aston K, He G, Castaneda CH, Thornton MA, Edwards TG, Wang S, Nanjunda R, Wilson WD, Fisher C, Bashkin JK. DNA Binding Polyamides and the Importance of DNA Recognition in their use as Gene-Specific and Antiviral Agents. Med Chem 2014; 4:338-344. [PMID: 24839583 DOI: 10.4172/2161-0444.1000162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is a long history for the bioorganic and biomedical use of N-methyl-pyrrole-derived polyamides (PAs) that are higher homologs of natural products such as distamycin A and netropsin. This work has been pursued by many groups, with the Dervan and Sugiyama groups responsible for many breakthroughs. We have studied PAs since about 1999, partly in industry and partly in academia. Early in this program, we reported methods to control cellular uptake of polyamides in cancer cell lines and other cells likely to have multidrug resistance efflux pumps induced. We went on to discover antiviral polyamides active against HPV31, where SAR showed that a minimum binding size of about 10 bp of DNA was necessary for activity. Subsequently we discovered polyamides active against two additional high-risk HPVs, HPV16 and 18, a subset of which showed broad spectrum activity against HPV16, 18 and 31. Aspects of our results presented here are incompatible with reported DNA recognition rules. For example, molecules with the same cognate DNA recognition properties varied from active to inactive against HPVs. We have since pursued the mechanism of action of antiviral polyamides, and polyamides in general, with collaborators at NanoVir, the University of Missouri-St. Louis, and Georgia State University. We describe dramatic consequences of β-alanine positioning even in relatively small, 8-ring polyamides; these results contrast sharply with prior reports. This paper was originally presented by JKB as a Keynote Lecture in the 2nd International Conference on Medicinal Chemistry and Computer Aided Drug Design Conference in Las Vegas, NV, October 2013.
Collapse
Affiliation(s)
- Kevin J Koeller
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - G Davis Harris
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - Karl Aston
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - Gaofei He
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - Carlos H Castaneda
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - Melissa A Thornton
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | | | - Shuo Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Rupesh Nanjunda
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | - James K Bashkin
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA ; NanoVir, LLC, Kalamazoo, MI 49008, USA
| |
Collapse
|
3
|
Borrelia burgdorferi cp32 BpaB modulates expression of the prophage NucP nuclease and SsbP single-stranded DNA-binding protein. J Bacteriol 2012; 194:4570-8. [PMID: 22730122 DOI: 10.1128/jb.00661-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Borrelia burgdorferi BpaB proteins of the spirochete's ubiquitous cp32 prophages are DNA-binding proteins, required both for maintenance of the bacteriophage episomes and for transcriptional regulation of the cp32 erp operons. Through use of DNase I footprinting, we demonstrate that BpaB binds the erp operator initially at the sequence 5'-TTATA-3'. Electrophoretic mobility shift assays indicated that BpaB also binds with high affinity to sites located in the 5' noncoding regions of two additional cp32 genes. Characterization of the proteins encoded by those genes indicated that they are a single-stranded DNA-binding protein and a nuclease, which we named SsbP and NucP, respectively. Chromatin immunoprecipitation indicated that BpaB binds erp, ssbP, and nucP in live B. burgdorferi. A mutant bacterium that overexpressed BpaB produced significantly higher levels of ssbP and nucP transcript than did the wild-type parent.
Collapse
|