1
|
Baylie T, Jemal M, Baye G, Getinet M, Amare GA, Adugna A, Abebaw D, Hibstu Z, Tegegne BA, Gugsa E, Adane T, Getie G, Ashenef B, Sinamaw D. The role of telomere and telomerase in cancer and novel therapeutic target: narrative review. Front Oncol 2025; 15:1542930. [PMID: 40151802 PMCID: PMC11947687 DOI: 10.3389/fonc.2025.1542930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/27/2025] [Indexed: 03/29/2025] Open
Abstract
Telomeres are dynamic complexes at the ends of chromosomes that are made up of protective proteins and tandem repeating DNA sequences. In the large majority of cancer cells, telomere length is maintained by telomerase, an enzyme that elongates telomeres. Telomerase activation is seen in the majority of cancer, which permits uncontrol cell proliferation. About 90% of human malignancies show telomere dysfunction and telomerase reactivation; as a result, telomerase activation plays a special role as a practically universal stage on the way to malignancy. This review understands the structural and functional of telomere and telomerase, mechanisms of telomerase activation in oncogenesis, biomarkers and therapeutic targets. Therapeutic strategies targeting telomerase, including antisense oligonucleotides, G-quadruplex stabilizers, immunotherapy, small-molecule inhibitors, gene therapy, Telomerase-Responsive Drug Release System, have shown promise in preclinical and clinical settings. Advances in telomere biology not only illuminate the complex interplay between telomeres, telomerase, and cancer progression but also open avenues for innovative, targeted cancer therapies.
Collapse
Affiliation(s)
- Temesgen Baylie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gelagay Baye
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Adugna
- Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Desalegn Abebaw
- Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu
- Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Endalkachew Gugsa
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tadegew Adane
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gedefaw Getie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Baye Ashenef
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Deresse Sinamaw
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
2
|
Nicolás Á, Quero JG, Barroso M, Gándara Z, Gude L. DNA Interactions and Biological Activity of 2,9-Disubstituted 1,10-Phenanthroline Thiosemicarbazone-Based Ligands and a 4-Phenylthiazole Derivative. BIOLOGY 2024; 13:60. [PMID: 38275736 PMCID: PMC10813753 DOI: 10.3390/biology13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Four 1,10-phenanthroline derivatives (1-4) were synthesized as potential telomeric DNA binders, three substituted in their chains with thiosemicarbazones (TSCs) and one 4-phenylthiazole derivative. The compounds were characterized using NMR, HRMS, FTIR-spectroscopy and combustion elemental analysis. Quadruplex and dsDNA interactions were preliminarily studied, especially for neutral derivative 1, using FRET-based DNA melting assays, equilibrium dialysis (both competitive and non-competitive), circular dichroism and viscosity titrations. The TSC derivatives bind and stabilize the telomeric Tel22 quadruplex more efficiently than dsDNA, with an estimated 24-fold selectivity determined through equilibrium dialysis for compound 1. In addition, cytotoxic activity against various tumor cells (PC-3, DU145, HeLa, MCF-7 and HT29) and two normal cell lines (HFF-1 and RWPE-1) was evaluated. Except for the 4-phenylthiazole derivative, which was inactive, the compounds showed moderate cytotoxic properties, with the salts displaying lower IC50 values (30-80 μM), compared to the neutral TSC, except in PC-3 cells (IC50 (1) = 18 μM). However, the neutral derivative was the only compound that exhibited a modest selectivity in the case of prostate cells (tumor PC-3 versus healthy RWPE-1). Cell cycle analysis and Annexin V/PI assays revealed that the compounds can produce cell death by apoptosis, an effect that has proven to be similar to that demonstrated by other known 1,10-phenanthroline G4 ligands endowed with antitumor properties, such as PhenDC3 and PhenQE8.
Collapse
Affiliation(s)
- Álvaro Nicolás
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
- Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Julia G. Quero
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
| | - Marta Barroso
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
| | - Zoila Gándara
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
- Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Lourdes Gude
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
- Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
3
|
Onnis V. Special Issue "Novel Anti-Proliferative Agents". Pharmaceuticals (Basel) 2023; 16:1437. [PMID: 37895908 PMCID: PMC10610072 DOI: 10.3390/ph16101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a disease that can affect any organ and spread to other nearby or distant organs [...].
Collapse
Affiliation(s)
- Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, CA, Italy
| |
Collapse
|
4
|
Fragkiadaki P, Renieri E, Kalliantasi K, Kouvidi E, Apalaki E, Vakonaki E, Mamoulakis C, Spandidos DA, Tsatsakis A. Τelomerase inhibitors and activators in aging and cancer: A systematic review. Mol Med Rep 2022; 25:158. [PMID: 35266017 PMCID: PMC8941523 DOI: 10.3892/mmr.2022.12674] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
The main aim of the present systematic review was to summarize the most frequently used telomerase regulators with an impact on aging and cancer that are referred to in in vitro and in vivo studies. For this purpose, a systematic review of the available literature on telomerase regulators referred to in articles from PubMed and Scopus libraries published from 2002 to 2021 and in accordance with PRISMA 2020 criteria, was conducted. Articles were included if they met the following criteria: They referred to telomerase modulators in aging and in cancer and were in vitro and/or in vivo studies, while studies that did not provide sufficient data or studies not written in English were excluded. In the present systematic review, 54 publications were included, of which 29 were full‑text published studies, 11 were full‑text reviews, 10 structure‑based design studies and 4 abstracts are reported in this review. Telomerase regulators were then categorized as synthetic direct telomerase inhibitors, synthetic indirect telomerase inhibitors, synthetic telomerase activators, natural direct telomerase activators, natural telomerase inhibitors and natural indirect telomerase activators, according to their origin and their activity. On the whole, as demonstrated herein, telomerase regulators appear to be promising treatment agents in various age‑related diseases. However, further in vivo and in vitro studies need to be performed in order to clarify the potentiality of telomerase as a therapeutic target.
Collapse
Affiliation(s)
- Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| | - Elisavet Renieri
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Katerina Kalliantasi
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Elisavet Kouvidi
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens 15232, Greece
| | - Evita Apalaki
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, 75105 Uppsala, Sweden
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| |
Collapse
|
5
|
From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021; 9:biomedicines9050550. [PMID: 34068948 PMCID: PMC8156014 DOI: 10.3390/biomedicines9050550] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides interact with a target RNA via Watson-Crick complementarity, affecting RNA-processing reactions such as mRNA degradation, pre-mRNA splicing, or mRNA translation. Since they were proposed decades ago, several have been approved for clinical use to correct genetic mutations. Three types of mechanisms of action (MoA) have emerged: RNase H-dependent degradation of mRNA directed by short chimeric antisense oligonucleotides (gapmers), correction of splicing defects via splice-modulation oligonucleotides, and interference of gene expression via short interfering RNAs (siRNAs). These antisense-based mechanisms can tackle several genetic disorders in a gene-specific manner, primarily by gene downregulation (gapmers and siRNAs) or splicing defects correction (exon-skipping oligos). Still, the challenge remains for the repair at the single-nucleotide level. The emerging field of epitranscriptomics and RNA modifications shows the enormous possibilities for recoding the transcriptome and repairing genetic mutations with high specificity while harnessing endogenously expressed RNA processing machinery. Some of these techniques have been proposed as alternatives to CRISPR-based technologies, where the exogenous gene-editing machinery needs to be delivered and expressed in the human cells to generate permanent (DNA) changes with unknown consequences. Here, we review the current FDA-approved antisense MoA (emphasizing some enabling technologies that contributed to their success) and three novel modalities based on post-transcriptional RNA modifications with therapeutic potential, including ADAR (Adenosine deaminases acting on RNA)-mediated RNA editing, targeted pseudouridylation, and 2′-O-methylation.
Collapse
|
6
|
Rodríguez-Arce E, Cancino P, Arias-Calderón M, Silva-Matus P, Saldías M. Oxoisoaporphines and Aporphines: Versatile Molecules with Anticancer Effects. Molecules 2019; 25:E108. [PMID: 31892146 PMCID: PMC6983244 DOI: 10.3390/molecules25010108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a disease that involves impaired genome stability with a high mortality index globally. Since its discovery, many have searched for effective treatment, assessing different molecules for their anticancer activity. One of the most studied sources for anticancer therapy is natural compounds and their derivates, like alkaloids, which are organic molecules containing nitrogen atoms in their structure. Among them, oxoisoaporphine and sampangine compounds are receiving increased attention due to their potential anticancer effects. Boldine has also been tested as an anticancer molecule. Boldine is the primary alkaloid extract from boldo, an endemic tree in Chile. These compounds and their derivatives have unique structural properties that potentially have an anticancer mechanism. Different studies showed that this molecule can target cancer cells through several mechanisms, including reactive oxygen species generation, DNA binding, and telomerase enzyme inhibition. In this review, we summarize the state-of-art research related to oxoisoaporphine, sampangine, and boldine, with emphasis on their structural characteristics and the relationship between structure, activity, methods of extraction or synthesis, and anticancer mechanism. With an effective cancer therapy still lacking, these three compounds are good candidates for new anticancer research.
Collapse
Affiliation(s)
- Esteban Rodríguez-Arce
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8370178, Chile;
| | - Patricio Cancino
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile;
| | - Manuel Arias-Calderón
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Paul Silva-Matus
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique 5951537, Chile;
| | - Marianela Saldías
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8370178, Chile;
| |
Collapse
|
7
|
The beginning of the end for conventional RECIST - novel therapies require novel imaging approaches. Nat Rev Clin Oncol 2019; 16:442-458. [PMID: 30718844 DOI: 10.1038/s41571-019-0169-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to improvements in our understanding of the biological principles of tumour initiation and progression, a wide variety of novel targeted therapies have been developed. Developments in biomedical imaging, however, have not kept pace with these improvements and are still mainly designed to determine lesion size alone, which is reflected in the Response Evaluation Criteria in Solid Tumors (RECIST). Imaging approaches currently used for the evaluation of treatment responses in patients with solid tumours, therefore, often fail to detect successful responses to novel targeted agents and might even falsely suggest disease progression, a scenario known as pseudoprogression. The ability to differentiate between responders and nonresponders early in the course of treatment is essential to allowing the early adjustment of treatment regimens. Various imaging approaches targeting a single dedicated tumour feature, as described in the hallmarks of cancer, have been successful in preclinical investigations, and some have been evaluated in pilot clinical trials. However, these approaches have largely not been implemented in clinical practice. In this Review, we describe current biomedical imaging approaches used to monitor responses to treatment in patients receiving novel targeted therapies, including a summary of the most promising future approaches and how these might improve clinical practice.
Collapse
|
8
|
RNA interference mediated downregulation of human telomerase reverse transcriptase (hTERT) in LN18 cells. Cytotechnology 2016; 68:2311-2321. [PMID: 27757712 DOI: 10.1007/s10616-016-0025-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/24/2016] [Indexed: 10/20/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) gene is a biomarker for the targeted therapy in various cancers. Presence of increased telomerase activity is a common feature of all cancers including glioblastoma. Both RNA and catalytic subunits of hTERT are the target sites for blocking its activity. The current study focuses on the expression of hTERT in glioblastoma and its regulation using two different novel siRNAs (small interfering RNA). Our patient data demonstrated increased expression of hTERT, which could be correlated with carcinogenesis in glioma. In vitro studies in siRNA transfected LN18 cells confirmed significant cell death (p < 0.05) as evidenced by MTT and trypan blue exclusion assay. These results were further supported by flow cytometry data, which showed significant increase in early and late apoptosis. The hTERT mRNA expression was effectively downregulated by 45 and 39 % with siRNA1 and siRNA2, respectively. These results were further confirmed by immunoblotting analysis (p < 0.05). Our results suggest that both the siRNAs effectively down regulated the expression of hTERT at mRNA and protein levels, thereby decreasing cell viability and proliferation rate. Hence siRNA mediated downregulation of hTERT could be a potential therapeutic avenue in glioblastoma.
Collapse
|
9
|
Heydari E, Raoof JB, Ojani R, Bagheryan Z. SiO2 nanoparticles modified CPE as a biosensor for determination of i-motif DNA/Tamoxifen interaction. Int J Biol Macromol 2016; 89:421-7. [DOI: 10.1016/j.ijbiomac.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/30/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
|
10
|
Shirgahi Talari F, Bagherzadeh K, Golestanian S, Jarstfer M, Amanlou M. Potent Human Telomerase Inhibitors: Molecular Dynamic Simulations, Multiple Pharmacophore-Based Virtual Screening, and Biochemical Assays. J Chem Inf Model 2015; 55:2596-610. [PMID: 26529120 DOI: 10.1021/acs.jcim.5b00336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Telomere maintenance is a universal cancer hallmark, and small molecules that disrupt telomere maintenance generally have anticancer properties. Since the vast majority of cancer cells utilize telomerase activity for telomere maintenance, the enzyme has been considered as an anticancer drug target. Recently, rational design of telomerase inhibitors was made possible by the determination of high resolution structures of the catalytic telomerase subunit from a beetle and subsequent molecular modeling of the human telomerase complex. A hybrid strategy including docking, pharmacophore-based virtual screening, and molecular dynamics simulations (MDS) were used to identify new human telomerase inhibitors. Docking methodology was applied to investigate the ssDNA telomeric sequence and two well-known human telomerase inhibitors' (BIBR1532 and MST-312) modes of interactions with hTERT TEN domain. Subsequently molecular dynamic simulations were performed to monitor and compare hTERT TEN domain, TEN-ssDNA, TEN-BIBR1532, TEN-MST-312, and TEN-ssDNA-BIBR1532 behavior in a dynamic environment. Pharmacophore models were generated considering the inhibitors manner in the TEN domain anchor site. These exploratory studies identified several new potent inhibitors whose IC50 values were generated experimentally in a low micromolar range with the aid of biochemical assays, including both the direct telomerase and the telomeric repeat amplification protocol (TRAP) assays. The results suggest that the current models of human telomerase are useful templates for rational inhibitor design.
Collapse
Affiliation(s)
- Faezeh Shirgahi Talari
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran, 14155-6451, Iran.,Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Kowsar Bagherzadeh
- Razi Drug Research Center, Iran University of Medical Sciences , Tehran, 1449614535, Iran
| | - Sahand Golestanian
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran, 14155-6451, Iran
| | - Michael Jarstfer
- Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran, 14155-6451, Iran
| |
Collapse
|
11
|
Tian X, Hou W, Bai S, Fan J, Tong H, Bai Y. XAV939 promotes apoptosis in a neuroblastoma cell line via telomere shortening. Oncol Rep 2014; 32:1999-2006. [PMID: 25190315 DOI: 10.3892/or.2014.3460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/19/2014] [Indexed: 11/05/2022] Open
Abstract
Telomeres, telomerase and tankyrase (TNKS) have an extremely important and special association with human cell aging and cancer. Telomerase activity is abnormally high in cancer cells and is accompanied by the overexpression of tankyrase 1 (TNKS1). TNKS1 is a positive regulator of telomerase activation and telomere extension in the human body, indicating that TNKS1 may be a possible therapeutic target for cancer. XAV939 is a small-molecule inhibitor of TNKS1. The objective of the present study was to investigate the apoptotic effect of XAV939 on the neuroblastoma (NB) SH-SY5Y cell line, as well as the change in telomere length and telomerase activity and elucidate the mechanism from this perspective. In the present study, we initially treated SH-SY5Y cells with XAV939 and RNA interference (RNAi)-TNKS1, and subsequently chose the optimal sequence for RNAi-TNKS1. We then measured the telomere length using quantitative real-time polymerase chain reaction (qPCR) assay, detected the telomerase activity using the ELISA kit, observed apoptotic morphology by transmission electron microscopy, and detected the percentages of apoptotic cells using flow cytometry and Hoechst 33342 staining. We also determined the invasive ability by a cell invasion assay. The results showed that short hairpin RNA-2 (shRNA-2) was the optimal sequence for RNAi-TNKS1. Treatment with both XAV939 and RNAi-TNKS1 shortened the telomere length, promoted apoptosis and reduced the invasive ability of the SH-SY5Y cells, yet had no effect on telomerase activity. XAV939 promoted apoptosis and reduced the invasiveness of SH-SY5Y cells dependent on telomere shortening, and further research should be conducted to clarify the exact mechanisms. This research may contribute to the cure of malignant NB using multi-targeted therapy with small-molecule agents.
Collapse
Affiliation(s)
- Xiaohong Tian
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Weijian Hou
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuling Bai
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jun Fan
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hao Tong
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yu Bai
- Department of Ophthalmology, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
12
|
Chen M, McLeskey SW. Telomere-based cancer treatment: emerging targeted therapies. Clin J Oncol Nurs 2011; 14:720-6. [PMID: 21112850 DOI: 10.1188/10.cjon.720-726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chemotherapy and radiation therapy are standard care in cancer treatment; however, both have numerous adverse side effects because they affect healthy as well as cancerous cells. The side effects, including decreased white blood cell count, nausea, hair loss, and fatigue, can be severe enough that patients may decide to forgo treatment. Targeted therapies are treatments that focus on specific molecules in cancerous cells and avoid disruption of healthy cells. Telomeres, the ends of chromosomes, are possible targets. In healthy cells, telomeres become shorter with each cell division, limiting the number of divisions that a normal cell can undergo. Many cancer cells have telomerase activity, which rebuilds telomeres after each cell division and confers immortality to cancer cells. Telomerase is an enzyme normally present to a significant degree only in the cells of developing fetuses. Treatments that target the telomerase enzyme itself or the chromosomal telomeres are being developed and tested in early clinical trials. This article focuses on several approaches to telomere-targeted therapy.
Collapse
Affiliation(s)
- Michele Chen
- Arthritis and Rheumatology of Georgia, Atlanta, USA.
| | | |
Collapse
|
13
|
Experimental research of tankyrase 1 antisense oligodeoxynucleotides on the proliferation of lung cancer cell nodules. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11805-010-0515-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|