1
|
Kasai T, Kigawa T. Autonomous adaptive optimization of NMR experimental conditions for precise inference of minor conformational states of proteins based on chemical exchange saturation transfer. PLoS One 2025; 20:e0321692. [PMID: 40378160 DOI: 10.1371/journal.pone.0321692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/10/2025] [Indexed: 05/18/2025] Open
Abstract
In scientific experiments where measurement sensitivity is a major limiting factor, the optimization of experimental conditions, such as measurement parameters, is essential to maximize the information obtained per unit time and the number of experiments performed. When optimization in advance is not possible because of limited prior knowledge of the system, autonomous, adaptive optimization must be implemented during the experiment. One approach to this involves sequential Bayesian optimal experimental design, which adopts mutual information as the utility function to be maximized. In this study, we applied this optimization method to the chemical exchange saturation transfer (CEST) experiment in nuclear magnetic resonance (NMR) spectroscopy, which is used to study minor but functionally important invisible states of certain molecules, such as proteins. Adaptive optimization was utilized because prior knowledge of minor states is limited. To this end, we developed an adaptive optimization system of 15N-CEST experimental conditions for proteins using Markov chain Monte Carlo (MCMC) to calculate the posterior distribution and utility function. To ensure the completion of MCMC computations within a reasonable period with sufficient precision, we developed a second-order approximation of the CEST forward model. Both simulations and actual measurements using the FF domain of the HYPA/FBP11 protein with the A39G mutation demonstrated that the adaptive method outperformed the conventional one in terms of estimation precision of minor-state parameters based on equal numbers of measurements. Because the algorithm used for the evaluation of the utility function is independent of the type of experiment, the proposed method can be applied to various spectroscopic measurements in addition to NMR, if the forward model or its approximation can be calculated sufficiently quickly.
Collapse
Affiliation(s)
- Takuma Kasai
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
- Research DX Foundation Team, TRIP Headquarters, RIKEN, Yokohama, Kanagawa, Japan
| | - Takanori Kigawa
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
- NMR Operation Team, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Through Diffusion Measurements of Molecules to a Numerical Model for Protein Crystallization in Viscous Polyethylene Glycol Solution. CRYSTALS 2022. [DOI: 10.3390/cryst12070881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein crystallography has become a popular method for biochemists, but obtaining high-quality protein crystals for precise structural analysis and larger ones for neutron analysis requires further technical progress. Many studies have noted the importance of solvent viscosity for the probability of crystal nucleation and for mass transportation; therefore, in this paper, we have reported on experimental results and simulation studies regarding the use of viscous polyethylene glycol (PEG) solvents for protein crystals. We investigated the diffusion rates of proteins, peptides, and small molecules in viscous PEG solvents using fluorescence correlation spectroscopy. In high-molecular-weight PEG solutions (molecular weights: 10,000 and 20,000), solute diffusion showed deviations, with a faster diffusion than that estimated by the Stokes–Einstein equation. We showed that the extent of the deviation depends on the difference between the molecular sizes of the solute and PEG solvent, and succeeded in creating equations to predict diffusion coefficients in viscous PEG solutions. Using these equations, we have developed a new numerical model of 1D diffusion processes of proteins and precipitants in a counter-diffusion chamber during crystallization processes. Examples of the application of anomalous diffusion in counter-diffusion crystallization are shown by the growth of lysozyme crystals.
Collapse
|
3
|
Kögler LM, Stichel J, Beck-Sickinger AG. Structural investigations of cell-free expressed G protein-coupled receptors. Biol Chem 2020; 401:97-116. [PMID: 31539345 DOI: 10.1515/hsz-2019-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are of great pharmaceutical interest and about 35% of the commercial drugs target these proteins. Still there is huge potential left in finding molecules that target new GPCRs or that modulate GPCRs differentially. For a rational drug design, it is important to understand the structure, binding and activation of the protein of interest. Structural investigations of GPCRs remain challenging, although huge progress has been made in the last 20 years, especially in the generation of crystal structures of GPCRs. This is mostly caused by issues with the expression yield, purity or labeling. Cell-free protein synthesis (CFPS) is an efficient alternative for recombinant expression systems that can potentially address many of these problems. In this article the use of CFPS for structural investigations of GPCRs is reviewed. We compare different CFPS systems, including the cellular basis and reaction configurations, and strategies for an efficient solubilization. Next, we highlight recent advances in the structural investigation of cell-free expressed GPCRs, with special emphasis on the role of photo-crosslinking approaches to investigate ligand binding sites on GPCRs.
Collapse
Affiliation(s)
- Lisa Maria Kögler
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| |
Collapse
|
4
|
Kasai T, Ono S, Koshiba S, Yamamoto M, Tanaka T, Ikeda S, Kigawa T. Amino-acid selective isotope labeling enables simultaneous overlapping signal decomposition and information extraction from NMR spectra. JOURNAL OF BIOMOLECULAR NMR 2020; 74:125-137. [PMID: 32002710 PMCID: PMC7080692 DOI: 10.1007/s10858-019-00295-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Signal overlapping is a major bottleneck for protein NMR analysis. We propose a new method, stable-isotope-assisted parameter extraction (SiPex), to resolve overlapping signals by a combination of amino-acid selective isotope labeling (AASIL) and tensor decomposition. The basic idea of Sipex is that overlapping signals can be decomposed with the help of intensity patterns derived from quantitative fractional AASIL, which also provides amino-acid information. In SiPex, spectra for protein characterization, such as 15N relaxation measurements, are assembled with those for amino-acid information to form a four-order tensor, where the intensity patterns from AASIL contribute to high decomposition performance even if the signals share similar chemical shift values or characterization profiles, such as relaxation curves. The loading vectors of each decomposed component, corresponding to an amide group, represent both the amino-acid and relaxation information. This information link provides an alternative protein analysis method that does not require "assignments" in a general sense; i.e., chemical shift determinations, since the amino-acid information for some of the residues allows unambiguous assignment according to the dual selective labeling. SiPex can also decompose signals in time-domain raw data without Fourier transform, even in non-uniformly sampled data without spectral reconstruction. These features of SiPex should expand biological NMR applications by overcoming their overlapping and assignment problems.
Collapse
Affiliation(s)
- Takuma Kasai
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.
- PRESTO, JST, Kawaguchi, Japan.
| | - Shunsuke Ono
- PRESTO, JST, Kawaguchi, Japan
- School of Computing, Tokyo Institute of Technology, Yokohama, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Toshiyuki Tanaka
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Shiro Ikeda
- Department of Statistical Inference and Mathematics, The Institute of Statistical Mathematics, Tachikawa, Japan
| | - Takanori Kigawa
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.
- School of Computing, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
5
|
Zhao J, Ren J, Wang N, Cheng Z, Yang R, Lin G, Guo Y, Cai D, Xie Y, Zhao X. Crystal structure of the second fibronectin type III (FN3) domain from human collagen α1 type XX. Acta Crystallogr F Struct Biol Commun 2017; 73:695-700. [PMID: 29199991 PMCID: PMC5713675 DOI: 10.1107/s2053230x1701648x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/15/2017] [Indexed: 01/28/2023] Open
Abstract
Collagen α1 type XX, which contains fibronectin type III (FN3) repeats involving six FN3 domains (referred to as the FN#1-FN#6 domains), is an unusual member of the fibril-associated collagens with interrupted triple helices (FACIT) subfamily of collagens. The results of standard protein BLAST suggest that the FN3 repeats might contribute to collagen α1 type XX acting as a cytokine receptor. To date, solution NMR structures of the FN#3, FN#4 and FN#6 domains have been determined. To obtain further structural evidence to understand the relationship between the structure and function of the FN3 repeats from collagen α1 type XX, the crystal structure of the FN#2 domain from human collagen α1 type XX (residues Pro386-Pro466; referred to as FN2-HCXX) was solved at 2.5 Å resolution. The crystal structure of FN2-HCXX shows an immunoglobulin-like fold containing a β-sandwich structure, which is formed by a three-stranded β-sheet (β1, β2 and β5) packed onto a four-stranded β-sheet (β3, β4, β6 and β7). Two consensus domains, tencon and fibcon, are structural analogues of FN2-HCXX. Fn8, an FN3 domain from human oncofoetal fibronectin, is the closest structural analogue of FN2-HCXX derived from a naturally occurring sequence. Based solely on the structural similarity of FN2-HCXX to other FN3 domains, the detailed functions of FN2-HCXX and the FN3 repeats in collagen α1 type XX cannot be identified.
Collapse
Affiliation(s)
- Jingfeng Zhao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Jixia Ren
- College of Life Science, Liaocheng University, Liaocheng, Shandong 252059, People’s Republic of China
| | - Nan Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Zhong Cheng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Runmei Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Gen Lin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Yi Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Dayong Cai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Yong Xie
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Xiaohong Zhao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| |
Collapse
|
6
|
|
7
|
Hara KY, Kondo A. ATP regulation in bioproduction. Microb Cell Fact 2015; 14:198. [PMID: 26655598 PMCID: PMC4676173 DOI: 10.1186/s12934-015-0390-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/25/2015] [Indexed: 01/06/2023] Open
Abstract
Adenosine-5'-triphosphate (ATP) is consumed as a biological energy source by many intracellular reactions. Thus, the intracellular ATP supply is required to maintain cellular homeostasis. The dependence on the intracellular ATP supply is a critical factor in bioproduction by cell factories. Recent studies have shown that changing the ATP supply is critical for improving product yields. In this review, we summarize the recent challenges faced by researchers engaged in the development of engineered cell factories, including the maintenance of a large ATP supply and the production of cell factories. The strategies used to enhance ATP supply are categorized as follows: addition of energy substrates, controlling pH, metabolic engineering of ATP-generating or ATP-consuming pathways, and controlling reactions of the respiratory chain. An enhanced ATP supply generated using these strategies improves target production through increases in resource uptake, cell growth, biosynthesis, export of products, and tolerance to toxic compounds.
Collapse
Affiliation(s)
- Kiyotaka Y Hara
- Department of Environmental Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan.
| |
Collapse
|
8
|
Castro-Roa D, Zenkin N. Methodology for the analysis of transcription and translation in transcription-coupled-to-translation systems in vitro. Methods 2015; 86:51-9. [PMID: 26080048 DOI: 10.1016/j.ymeth.2015.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022] Open
Abstract
The various properties of RNA polymerase (RNAP) complexes with nucleic acids during different stages of transcription involve various types of regulation and different cross-talk with other cellular entities and with fellow RNAP molecules. The interactions of transcriptional apparatus with the translational machinery have been focused mainly in terms of outcomes of gene expression, whereas the study of the physical interaction of the ribosome and the RNAP remains obscure partly due to the lack of a system that allows such observations. In this article we will describe the methodology needed to set up a pure, transcription-coupled-to-translation system in which the translocation of the ribosome can be performed in a step-wise manner towards RNAP allowing investigation of the interactions between the two machineries at colliding and non-colliding distances. In the same time RNAP can be put in various types of states, such as paused, roadblocked, backtracked, etc. The experimental system thus allows studying the effects of the ribosome on different aspects of transcription elongation and the effects by RNAP on translation.
Collapse
Affiliation(s)
- Daniel Castro-Roa
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK.
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
9
|
Terada T, Yokoyama S. Escherichia coli Cell-Free Protein Synthesis and Isotope Labeling of Mammalian Proteins. Methods Enzymol 2015; 565:311-45. [DOI: 10.1016/bs.mie.2015.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Castro-Roa D, Zenkin N. Methods for the assembly and analysis of in vitro transcription-coupled-to-translation systems. Methods Mol Biol 2015; 1276:81-99. [PMID: 25665559 DOI: 10.1007/978-1-4939-2392-2_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
RNA polymerase is a complex machinery, which is further embedded in interactions with other cellular components that interplay with either the transcribed DNA (DNA polymerases, topoisomerases, etc.) or the nascent RNA (RNA processing enzymes, ribosomes, etc.). In prokaryotes, coupling of transcription and translation is thought to play many regulatory roles but the mechanistic understanding of their interactions has been hindered by the lack of a defined experimental system. Here, we describe a pure transcription-coupled-to-translation system in which control of the ribosome has been achieved through its stepwise translocation towards RNA polymerase. This system can be used to study the effects of concurrent translation on RNA chain elongation and to elucidate the interface between the two macromolecular complexes.
Collapse
Affiliation(s)
- Daniel Castro-Roa
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK,
| | | |
Collapse
|
11
|
The zinc-binding region (ZBR) fragment of Emi2 can inhibit APC/C by targeting its association with the coactivator Cdc20 and UBE2C-mediated ubiquitylation. FEBS Open Bio 2014; 4:689-703. [PMID: 25161877 PMCID: PMC4141206 DOI: 10.1016/j.fob.2014.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/16/2014] [Accepted: 06/30/2014] [Indexed: 01/21/2023] Open
Abstract
Overexpression of the ZBR fragment of Emi2, but not of Emi1, induces abnormal cell division. The Emi2 ZBR fragment impairs the association of the coactivator Cdc20 with APC/C. The Emi2 ZBR fragment inhibits ubiquitylation by the cullin-RING of APC/C and E2C. The Emi2 ZBR-specific residues for APC/C inhibitory activity have been identified.
Anaphase-promoting complex or cyclosome (APC/C) is a multisubunit ubiquitin ligase E3 that targets cell-cycle regulators. Cdc20 is required for full activation of APC/C in M phase, and mediates substrate recognition. In vertebrates, Emi2/Erp1/FBXO43 inhibits APC/C-Cdc20, and functions as a cytostatic factor that causes long-term M phase arrest of mature oocytes. In this study, we found that a fragment corresponding to the zinc-binding region (ZBR) domain of Emi2 inhibits cell-cycle progression, and impairs the association of Cdc20 with the APC/C core complex in HEK293T cells. Furthermore, we revealed that the ZBR fragment of Emi2 inhibits in vitro ubiquitin chain elongation catalyzed by the APC/C cullin-RING ligase module, the ANAPC2–ANAPC11 subcomplex, in combination with the ubiquitin chain-initiating E2, E2C/UBE2C/UbcH10. Structural analyses revealed that the Emi2 ZBR domain uses different faces for the two mechanisms. Thus, the double-faced ZBR domain of Emi2 antagonizes the APC/C function by inhibiting both the binding with the coactivator Cdc20 and ubiquitylation mediated by the cullin-RING ligase module and E2C. In addition, the tail region between the ZBR domain and the C-terminal RL residues [the post-ZBR (PZ) region] interacts with the cullin subunit, ANAPC2. In the case of the ZBR fragment of the somatic paralogue of Emi2, Emi1/FBXO5, these inhibitory activities against cell division and ubiquitylation were not observed. Finally, we identified two sets of key residues in the Emi2 ZBR domain that selectively exert each of the dual Emi2-specific modes of APC/C inhibition, by their mutation in the Emi2 ZBR domain and their transplantation into the Emi1 ZBR domain.
Collapse
|
12
|
Kogure H, Handa Y, Nagata M, Kanai N, Güntert P, Kubota K, Nameki N. Identification of residues required for stalled-ribosome rescue in the codon-independent release factor YaeJ. Nucleic Acids Res 2013; 42:3152-63. [PMID: 24322300 PMCID: PMC3950681 DOI: 10.1093/nar/gkt1280] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The YaeJ protein is a codon-independent release factor with peptidyl-tRNA hydrolysis (PTH) activity, and functions as a stalled-ribosome rescue factor in Escherichia coli. To identify residues required for YaeJ function, we performed mutational analysis for in vitro PTH activity towards rescue of ribosomes stalled on a non-stop mRNA, and for ribosome-binding efficiency. We focused on residues conserved among bacterial YaeJ proteins. Additionally, we determined the solution structure of the GGQ domain of YaeJ from E. coli using nuclear magnetic resonance spectroscopy. YaeJ and a human homolog, ICT1, had similar levels of PTH activity, despite various differences in sequence and structure. While no YaeJ-specific residues important for PTH activity occur in the structured GGQ domain, Arg118, Leu119, Lys122, Lys129 and Arg132 in the following C-terminal extension were required for PTH activity. All of these residues are completely conserved among bacteria. The equivalent residues were also found in the C-terminal extension of ICT1, allowing an appropriate sequence alignment between YaeJ and ICT1 proteins from various species. Single amino acid substitutions for each of these residues significantly decreased ribosome-binding efficiency. These biochemical findings provide clues to understanding how YaeJ enters the A-site of stalled ribosomes.
Collapse
Affiliation(s)
- Hiroyuki Kogure
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan, Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt am Main, Germany and Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Bernhard F, Tozawa Y. Cell-free expression--making a mark. Curr Opin Struct Biol 2013; 23:374-80. [PMID: 23628286 DOI: 10.1016/j.sbi.2013.03.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 11/27/2022]
Abstract
Cell-free protein production opens new perspectives for the direct manipulation of expression compartments in combination with reduced complexity of physiological requirements. The technology is therefore in particular suitable for the general synthesis of difficult proteins including toxins and membrane proteins as well as for the analysis of their functional folding in artificial environments. A further key application of cell-free expression is the fast and economic labeling of proteins for structural and functional applications. Two extract sources, wheat embryos and Escherichia coli cells, are currently employed for the preparative scale cell-free production of proteins. Recent achievements in structural characterization include cell-free synthesized membrane proteins and even larger protein assemblies may become feasible.
Collapse
Affiliation(s)
- Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany.
| | | |
Collapse
|
14
|
Shadiac N, Nagarajan Y, Waters S, Hrmova M. Close allies in membrane protein research: Cell-free synthesis and nanotechnology. Mol Membr Biol 2013; 30:229-45. [DOI: 10.3109/09687688.2012.762125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Kogure H, Hikawa Y, Hagihara M, Tochio N, Koshiba S, Inoue Y, Güntert P, Kigawa T, Yokoyama S, Nameki N. Solution structure and siRNA-mediated knockdown analysis of the mitochondrial disease-related protein C12orf65. Proteins 2012; 80:2629-42. [DOI: 10.1002/prot.24152] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/27/2012] [Accepted: 07/05/2012] [Indexed: 01/17/2023]
|
16
|
Yokoyama J, Matsuda T, Koshiba S, Tochio N, Kigawa T. A practical method for cell-free protein synthesis to avoid stable isotope scrambling and dilution. Anal Biochem 2011; 411:223-9. [DOI: 10.1016/j.ab.2011.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 11/16/2022]
|
17
|
Solution Structure of the Catalytic Domain of the Mitochondrial Protein ICT1 That Is Essential for Cell Vitality. J Mol Biol 2010; 404:260-73. [DOI: 10.1016/j.jmb.2010.09.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 11/17/2022]
|