1
|
Lu M, Li K, Zhou Y, Xiao J. Identification of the genetic background of laboratory rats through amplicon-based next-generation sequencing for single-nucleotide polymorphism genotyping. BMC Genom Data 2024; 25:84. [PMID: 39363223 PMCID: PMC11451121 DOI: 10.1186/s12863-024-01267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Laboratory rats, as model animals, have been extensively used in the fields of life science and medicine. It is crucial to routinely monitor the genetic background of laboratory rats. The conventional approach relies on gel electrophoresis and capillary electrophoresis (CE) technologies. However, the experimental and data analysis procedures for both of these methods are time consuming and costly. RESULTS We established a single-nucleotide polymorphism (SNP) typing scheme using multiplex polymerase chain reaction (PCR) and next-generation sequencing (NGS) to address the genetic background ambiguity in laboratory rats. This methodology involved three rounds of PCR and two rounds of magnetic bead selection to improve the quality of the sequencing data. We simultaneously analysed 100 laboratory rats (including rats of 5 inbred strains and 2 in-house closed colonies), and the sequencing depth varied from an average of 108.25 to 5189.89, with sample uniformity ranging from 82.5 to 97.5%. A total of 98.9% of the amplicons were successfully genotyped (≥ 30 reads). Genetic background analysis revealed that all 38 experimental rats from the 5 inbred strains were successfully identified (without a heterozygous allele). For the 2 in-house closed colonies, the average heterozygosity (0.162 and 0.169) deviated from the typical range of 0.5-0.7, indicating a departure from the ideal heterozygosity level. Additionally, we employed multiplex PCR-CE to validate the NGS-based method, which yielded consistent results for all the rat strains. These results demonstrated that this approach significantly improves efficiency, saves time, reduces costs and ensures accuracy. CONCLUSION By utilizing NGS technology, our developed method leverages SNP genotyping for genetic background identification in laboratory rats, demonstrating advantages in terms of labour efficiency and cost-effectiveness, thereby rendering it well suited for projects involving extensive sample cohorts.
Collapse
Affiliation(s)
- Meng Lu
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin North Road, Shanghai, 201620, China
| | - Kai Li
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin North Road, Shanghai, 201620, China
| | - Yuxun Zhou
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin North Road, Shanghai, 201620, China
| | - Junhua Xiao
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin North Road, Shanghai, 201620, China.
| |
Collapse
|
2
|
Yang J, DeVore AN, Fu DA, Spicer MM, Guo M, Thompson SG, Ahlers-Dannen KE, Polato F, Nussenzweig A, Fisher RA. Rapid and precise genotyping of transgene zygosity in mice using an allele-specific method. Life Sci Alliance 2023; 6:e202201729. [PMID: 37037594 PMCID: PMC10087101 DOI: 10.26508/lsa.202201729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023] Open
Abstract
Precise determination of transgene zygosity is essential for use of transgenic mice in research. Because integration loci of transgenes are usually unknown due to their random insertion, assessment of transgene zygosity remains a challenge. Current zygosity genotyping methods (progeny testing, qPCR, and NGS-computational biology analysis) are time consuming, prone to error or technically challenging. Here, we developed a novel method to determine transgene zygosity requiring no knowledge of transgene insertion loci. This method applies allele-specific restriction enzyme digestion of PCR products (RE/PCR) to rapidly and reliably quantify transgene zygosity. We demonstrate the applicability of this method to three transgenic strains of mice (Atm TgC3001L, Nes-Cre, and Syn1-Cre) harboring a unique restriction enzyme site on either the transgene or its homologous sequence in the mouse genome. This method is as accurate as the gold standard of progeny testing but requires 2 d instead of a month or more. It is also exceedingly more accurate than the most commonly used approach of qPCR quantification. Our novel method represents a significant technical advance in determining transgene zygosities in mice.
Collapse
Affiliation(s)
- Jianqi Yang
- Departments of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
| | - Alison N DeVore
- Departments of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
| | - Daniel A Fu
- Departments of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
| | - Mackenzie M Spicer
- Departments of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
| | - Mengcheng Guo
- Departments of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
| | - Samantha G Thompson
- Departments of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
| | | | - Federica Polato
- Laboratory of Genome Integrity, National Institutes of Health, Centre for Cancer Research, Bethesda, MD, USA
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Institutes of Health, Centre for Cancer Research, Bethesda, MD, USA
| | - Rory A Fisher
- Departments of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
- Roy J and Lucille A Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Yu C, Caothien R, Pham A, Tam L, Alcantar T, Bacarro N, Reyes J, Jackson M, Nakao B, Roose-Girma M. ASIS-Seq: Transgene Insertion Site Mapping by Nanopore Adaptive Sampling. Methods Mol Biol 2023; 2631:135-153. [PMID: 36995666 DOI: 10.1007/978-1-0716-2990-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Generation of transgenic mice by direct microinjection of foreign DNA into fertilized ova has become a routine technique in biomedical research. It remains an essential tool for studying gene expression, developmental biology, genetic disease models, and their therapies. However, the random integration of foreign DNA into the host genome that is inherent to this technology can lead to confounding effects associated with insertional mutagenesis and transgene silencing. Locations of most transgenic lines remain unknown because the methods are often burdensome (Nicholls et al., G3: Genes Genomes Genetics 9:1481-1486, 2019) or have limitations (Goodwin et al., Genome Research 29:494-505, 2019). Here, we present a method that we call Adaptive Sampling Insertion Site Sequencing (ASIS-Seq) to locate transgene integration sites using targeted sequencing on Oxford Nanopore Technologies' (ONT) sequencers. ASIS-Seq requires only about 3 ug of genomic DNA, 3 hours of hands-on sample preparation time, and 3 days of sequencing time to locate transgenes in a host genome.
Collapse
Affiliation(s)
- Charles Yu
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Roger Caothien
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Anna Pham
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Lucinda Tam
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Tuija Alcantar
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Natasha Bacarro
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Juan Reyes
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Marques Jackson
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Brian Nakao
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA
| | - Merone Roose-Girma
- Genentech, Inc., Department of Molecular Biology, South San Francisco, CA, USA.
| |
Collapse
|
4
|
Park JE, Zhang XF, Choi SH, Okahara J, Sasaki E, Silva AC. Generation of transgenic marmosets expressing genetically encoded calcium indicators. Sci Rep 2016; 6:34931. [PMID: 27725685 PMCID: PMC5057151 DOI: 10.1038/srep34931] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/20/2016] [Indexed: 02/04/2023] Open
Abstract
Chronic monitoring of neuronal activity in the living brain with optical imaging techniques became feasible owing to the continued development of genetically encoded calcium indicators (GECIs). Here we report for the first time the successful generation of transgenic marmosets (Callithrix jacchus), an important nonhuman primate model in neurophysiological research, which were engineered to express the green fluorescent protein (GFP)-based family of GECIs, GCaMP, under control of either the CMV or the hSyn promoter. High titer lentiviral vectors were produced, and injected into embryos collected from donor females. The infected embryos were then transferred to recipient females. Eight transgenic animals were born and shown to have stable and functional GCaMP expression in several different tissues. Germline transmission of the transgene was confirmed in embryos generated from two of the founder transgenic marmosets that reached sexual maturity. These embryos were implanted into six recipient females, three of which became pregnant and are in advanced stages of gestation. We believe these transgenic marmosets will be invaluable non-human primate models in neuroscience, allowing chronic in vivo monitoring of neural activity with functional confocal and multi-photon optical microscopy imaging of intracellular calcium dynamics.
Collapse
Affiliation(s)
- Jung Eun Park
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Xian Feng Zhang
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sang-Ho Choi
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Junko Okahara
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Tonomachi, Kawasaki, Kanagawa 210-0821, Japan
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Tonomachi, Kawasaki, Kanagawa 210-0821, Japan.,Keio advanced Research Center, Keio University, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Kwon MJ, Lee KY, Lee HW, Kim JH, Kim TY. SOD3 Variant, R213G, Altered SOD3 Function, Leading to ROS-Mediated Inflammation and Damage in Multiple Organs of Premature Aging Mice. Antioxid Redox Signal 2015; 23:985-99. [PMID: 25927599 DOI: 10.1089/ars.2014.6035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS Among the isoforms of superoxide dismutase, SOD3 is uniquely associated with the extracellular matrix (ECM) by virtue of its heparin-binding domain (HBD). Substitution of arginine by glycine at amino acid 213 (R213G) of its HBD was first identified in patients with heart failure, followed by many studies that focused on the role of this variant (SOD3(R213G)) in ischemic heart disease and cardiovascular disease. However, the biological significance of this mutation in a physiological context is largely unknown. RESULTS As a first step, we generated SOD3(R213G) transgenic mice, in which the variant gene was driven by the β-actin promoter allowing expression in all tissues. Unexpectedly, we found that SOD3(R213G) transgenic mice exhibited premature aging, including hair graying, abnormal gait, and a shortened life span. Specifically, the aged mice showed systemic inflammation and organ degeneration. In addition, aged SOD3(R213G) mice are susceptible to neutrophil-mediated inflammation. Among other functions, the neutrophils of SOD3(R213G) mice produce high amounts of reactive oxygen species, which would normally be controlled by SOD3 in ECM. INNOVATION These findings showed for the first time that arginine 213 in the HBD of SOD3 is critical for maintaining proper organ function through moderating the normal innate immune response, which would otherwise lead to chronic inflammation and degenerative diseases in aged mice. CONCLUSION Therefore, patients with this variant may be treated with SOD3 as a therapeutic strategy to prevent or cure these diseases.
Collapse
Affiliation(s)
- Myung-Ja Kwon
- 1 Department of Dermatology, Catholic Research Institute of Medical Science , College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyo-Young Lee
- 2 Department of Hospital Pathology, College of Medicine, The Catholic University of Korea , Seoul, Republic of Korea
| | - Han-Woong Lee
- 3 Department of Biochemistry, College of Life Science and Biotechnology , Yonsei University, Seoul, Republic of Korea
| | - Jung-Ho Kim
- 1 Department of Dermatology, Catholic Research Institute of Medical Science , College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Yoon Kim
- 1 Department of Dermatology, Catholic Research Institute of Medical Science , College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
6
|
Exchange of Cone for Rod Phosphodiesterase 6 Catalytic Subunits in Rod Photoreceptors Mimics in Part Features of Light Adaptation. J Neurosci 2015; 35:9225-35. [PMID: 26085644 DOI: 10.1523/jneurosci.3563-14.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Despite the expression of homologous phototransduction components, the molecular basis for differences in light-evoked responses between rod and cone photoreceptors remains unclear. We examined the role of cGMP phosphodiesterase (PDE6) in this difference by expressing cone PDE6 (PDE6C) in rd1/rd1 rods lacking rod PDE6 (PDE6AB) using transgenic mice. The expression of PDE6C rescues retinal degeneration observed in rd1/rd1 rods. Double-transgenic rods (PDE6C++) were compared with rd1/+ rods based on similar PDE6 expression. PDE6C increased the basal PDE activity and speeded the rate-limiting step for phototransduction deactivation, causing rod photoresponses to appear light adapted, with reduced dark current and sensitivity and faster response kinetics. When PDE6C++ and rd1/+ rods were exposed to similar background light, rd1/+ rods displayed greater desensitization. These results indicate an increased spontaneous activity and faster deactivation of PDE6C compared with PDE6AB in darkness, but that background light increases steady PDE6C activity to a lesser extent. In addition to accelerating the recovery of the photoresponse, faster PDE6C deactivation may blunt the rise in background-induced steady PDE6C activity. Therefore, higher basal PDE6C activity and faster deactivation together partially account for faster and less sensitive cone photoresponses in darkness, whereas a reduced rise of steady PDE6C activity in background light may allow cones to avoid saturation. SIGNIFICANCE STATEMENT Cones are the primary photoreceptors responsible for most of our visual experience. Cone light responses are less sensitive and display speeded responses compared with rods. Despite the fact that rods and cones use a G-protein signaling cascade with similar organization, the mechanistic basis for these differences remains unclear. Here, we examined the role of distinct isoforms of PDE6, the effector enzyme in phototransduction, in these differences. We developed a transgenic mouse model that expresses cone PDE6 in rods and show that the cone PDE6 isoform is partially responsible for the difference in sensitivity and response kinetics between rods and cones.
Collapse
|
7
|
Belizário JE, Akamini P, Wolf P, Strauss B, Xavier-Neto J. New routes for transgenesis of the mouse. J Appl Genet 2012; 53:295-315. [PMID: 22569888 DOI: 10.1007/s13353-012-0096-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 02/01/2012] [Accepted: 04/05/2012] [Indexed: 12/19/2022]
Abstract
Transgenesis refers to the molecular genetic techniques for directing specific insertions, deletions and point mutations in the genome of germ cells in order to create genetically modified organisms (GMO). Genetic modification is becoming more practicable, efficient and predictable with the development and use of a variety of cell and molecular biology tools and DNA sequencing technologies. A collection of plasmidial and viral vectors, cell-type specific promoters, positive and negative selectable markers, reporter genes, drug-inducible Cre-loxP and Flp/FRT recombinase systems are available which ensure efficient transgenesis in the mouse. The technologies for the insertion and removal of genes by homologous-directed recombination in embryonic stem cells (ES) and generation of targeted gain- and loss-of function alleles have allowed the creation of thousands of mouse models of a variety of diseases. The engineered zinc finger nucleases (ZFNs) and small hairpin RNA-expressing constructs are novel tools with useful properties for gene knockout free of ES manipulation. In this review we briefly outline the different approaches and technologies for transgenesis as well as their advantages and disadvantages. We also present an overview on how the novel integrative mouse and human genomic databases and bioinformatics approaches have been used to understand genotype-phenotype relationships of hundreds of mutated and candidate disease genes in mouse models. The updating and continued improvements of the genomic technologies will eventually help us to unraveling the biological and pathological processes in such a way that they can be translated more efficiently from mouse to human and vise-versa.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Lineu Prestes, 1524, CEP 05508-900, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
8
|
Ménoret S, Tesson L, Remy S, Usal C, Iscache AL, Thynard R, Nguyen TH, Anegon I. Transgenesis and genome analysis, Nantes, France, June 6th 2011. Transgenic Res 2011. [PMCID: PMC7101805 DOI: 10.1007/s11248-011-9541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Séverine Ménoret
- Platform Transgenic Rats Nantes IBiSA, Nantes, France
- CHU Nantes, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, Nantes, France
| | - Laurent Tesson
- Platform Transgenic Rats Nantes IBiSA, Nantes, France
- CHU Nantes, Nantes, France
- Université de Nantes, Nantes, France
- INSERM UMR 643, 44093 Nantes, France
| | - Séverine Remy
- Platform Transgenic Rats Nantes IBiSA, Nantes, France
- CHU Nantes, Nantes, France
- Université de Nantes, Nantes, France
- INSERM UMR 643, 44093 Nantes, France
| | - Claire Usal
- Platform Transgenic Rats Nantes IBiSA, Nantes, France
- CHU Nantes, Nantes, France
- Université de Nantes, Nantes, France
- INSERM UMR 643, 44093 Nantes, France
| | - Anne-Laure Iscache
- Platform Transgenic Rats Nantes IBiSA, Nantes, France
- CHU Nantes, Nantes, France
- Université de Nantes, Nantes, France
- INSERM UMR 643, 44093 Nantes, France
| | - Reynald Thynard
- Platform Transgenic Rats Nantes IBiSA, Nantes, France
- CHU Nantes, Nantes, France
- Université de Nantes, Nantes, France
- INSERM UMR 643, 44093 Nantes, France
| | | | - Ignacio Anegon
- Platform Transgenic Rats Nantes IBiSA, Nantes, France
- CHU Nantes, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, Nantes, France
| |
Collapse
|
9
|
Thirulogachandar V, Pandey P, Vaishnavi CS, Reddy MK. An affinity-based genome walking method to find transgene integration loci in transgenic genome. Anal Biochem 2011; 416:196-201. [PMID: 21669178 DOI: 10.1016/j.ab.2011.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/08/2011] [Accepted: 05/16/2011] [Indexed: 11/28/2022]
Abstract
Identifying a good transgenic event from the pool of putative transgenics is crucial for further characterization. In transgenic plants, the transgene can integrate in either single or multiple locations by disrupting the endogenes and/or in heterochromatin regions causing the positional effect. Apart from this, to protect the unauthorized use of transgenic plants, the signature of transgene integration for every commercial transgenic event needs to be characterized. Here we show an affinity-based genome walking method, named locus-finding (LF) PCR (polymerase chain reaction), to determine the transgene flanking sequences of rice plants transformed by Agrobacterium tumefaciens. LF PCR includes a primary PCR by a degenerated primer and transfer DNA (T-DNA)-specific primer, a nested PCR, and a method of enriching the desired amplicons by using a biotin-tagged primer that is complementary to the T-DNA. This enrichment technique separates the single strands of desired amplicons from the off-target amplicons, reducing the template complexity by several orders of magnitude. We analyzed eight transgenic rice plants and found the transgene integration loci in three different chromosomes. The characteristic illegitimate recombination of the Agrobacterium sp. was also observed from the sequenced integration loci. We believe that the LF PCR should be an indispensable technique in transgenic analysis.
Collapse
Affiliation(s)
- V Thirulogachandar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | |
Collapse
|
10
|
Marchini C, Gabrielli F, Iezzi M, Zenobi S, Montani M, Pietrella L, Kalogris C, Rossini A, Ciravolo V, Castagnoli L, Tagliabue E, Pupa SM, Musiani P, Monaci P, Menard S, Amici A. The human splice variant Δ16HER2 induces rapid tumor onset in a reporter transgenic mouse. PLoS One 2011; 6:e18727. [PMID: 21559085 PMCID: PMC3084693 DOI: 10.1371/journal.pone.0018727] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 03/16/2011] [Indexed: 11/18/2022] Open
Abstract
Several transgenic mice models solidly support the hypothesis that HER2 (ERBB2) overexpression or mutation promotes tumorigenesis. Recently, a HER2 splice variant lacking exon-16 (Δ16HER2) has been detected in human breast carcinomas. This alternative protein, a normal byproduct of HER2, has an increased transforming potency compared to wild-type (wt) HER2 receptors. To examine the ability of Δ16HER2 to transform mammary epithelium in vivo and to monitor Δ16HER2-driven tumorigenesis in live mice, we generated and characterized a mouse line that transgenically expresses both human Δ16HER2 and firefly luciferase under the transcriptional control of the MMTV promoter. All the transgenic females developed multifocal mammary tumors with a rapid onset and an average latency of 15.11 weeks. Immunohistochemical analysis revealed the concurrent expression of luciferase and the human Δ16HER2 oncogene only in the mammary gland and in strict correlation with tumor development. Transgenic Δ16HER2 expressed on the tumor cell plasma membrane from spontaneous mammary adenocarcinomas formed constitutively active homodimers able to activate the oncogenic signal transduction pathway mediated through Src kinase. These new transgenic animals demonstrate the ability of the human Δ16HER2 isoform to transform "per se" mammary epithelium in vivo. The high tumor incidence as well as the short latency strongly suggests that the Δ16HER2 splice variant represents the transforming form of the HER2 oncoprotein.
Collapse
Affiliation(s)
- Cristina Marchini
- Department of Bioscience and Biotechnology, University of Camerino, Camerino, Italy
| | - Federico Gabrielli
- Department of Bioscience and Biotechnology, University of Camerino, Camerino, Italy
| | - Manuela Iezzi
- Aging Research Centre, G. d'Annunzio University, Chieti, Italy
| | - Santa Zenobi
- Department of Bioscience and Biotechnology, University of Camerino, Camerino, Italy
| | - Maura Montani
- Department of Bioscience and Biotechnology, University of Camerino, Camerino, Italy
| | - Lucia Pietrella
- Department of Bioscience and Biotechnology, University of Camerino, Camerino, Italy
| | - Cristina Kalogris
- Department of Bioscience and Biotechnology, University of Camerino, Camerino, Italy
| | - Anna Rossini
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, AmadeoLab, Milan, Italy
| | - Valentina Ciravolo
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, AmadeoLab, Milan, Italy
| | - Lorenzo Castagnoli
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, AmadeoLab, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, AmadeoLab, Milan, Italy
| | - Serenella M. Pupa
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, AmadeoLab, Milan, Italy
| | - Piero Musiani
- Aging Research Centre, G. d'Annunzio University, Chieti, Italy
| | - Paolo Monaci
- Department of Bioscience and Biotechnology, University of Camerino, Camerino, Italy
| | - Sylvie Menard
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, AmadeoLab, Milan, Italy
| | - Augusto Amici
- Department of Bioscience and Biotechnology, University of Camerino, Camerino, Italy
- * E-mail:
| |
Collapse
|