1
|
Xu H, Bao X, Hong W, Wang A, Wang K, Dong H, Hou J, Govinden R, Deng B, Chenia HY. Biological Characterization and Evolution of Bacteriophage T7-△holin During the Serial Passage Process. Front Microbiol 2021; 12:705310. [PMID: 34408735 PMCID: PMC8365609 DOI: 10.3389/fmicb.2021.705310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022] Open
Abstract
Bacteriophage T7 gene 17.5 coding for the only known holin is one of the components of its lysis system, but the holin activity in T7 is more complex than a single gene, and evidence points to the existence of additional T7 genes with holin activity. In this study, a T7 phage with a gene 17.5 deletion (T7-△holin) was rescued and its biological characteristics and effect on cell lysis were determined. Furthermore, the genomic evolution of mutant phage T7-△holin during serial passage was assessed by whole-genome sequencing analysis. It was observed that deletion of gene 17.5 from phage T7 delays lysis time and enlarges the phage burst size; however, this biological characteristic recovered to normal lysis levels during serial passage. Scanning electron microscopy showed that the two opposite ends of E. coli BL21 cells swell post-T7-△holin infection rather than drilling holes on cell membrane when compared with T7 wild-type infection. No visible progeny phage particle accumulation was observed inside the E. coli BL21 cells by transmission electron microscopy. Following serial passage of T7-△holin from the 1st to 20th generations, the mRNA levels of gene 3.5 and gene 19.5 were upregulated and several mutation sites were discovered, especially two missense mutations in gene 19.5, which indicate a potential contribution to the evolution of the T7-△holin. Although the burst size of T7-△holin increased, high titer cultivation of T7-△holin was not achieved by optimizing the culture process. Accordingly, these results suggest that gene 19.5 is a potential lysis-related component that needs to be studied further and that the T7-△holin strain with its gene 17.5 deletion is not adequate to establish the high-titer phage cultivation process.
Collapse
Affiliation(s)
- Hai Xu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China.,Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China.,School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Xi Bao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Weiming Hong
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Anping Wang
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Kaimin Wang
- Animal, Plant and Food Test Center of Nanjing Customs, Nanjing, China
| | - Hongyan Dong
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Roshini Govinden
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Bihua Deng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hafizah Y Chenia
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Kłopot A, Zakrzewska A, Lecion D, Majewska JM, Harhala MA, Lahutta K, Kaźmierczak Z, Łaczmański Ł, Kłak M, Dąbrowska K. Real-Time qPCR as a Method for Detection of Antibody-Neutralized Phage Particles. Front Microbiol 2017; 8:2170. [PMID: 29163448 PMCID: PMC5672142 DOI: 10.3389/fmicb.2017.02170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023] Open
Abstract
The most common method for phage quantitation is the plaque assay, which relies on phage ability to infect bacteria. However, non-infective phage particles may preserve other biological properties; specifically, they may enter interactions with the immune system of animals and humans. Here, we demonstrate real-time quantitative polymerase chain reaction (qPCR) detection of bacteriophages as an alternative to the plaque assay. The closely related staphylococcal bacteriophages A3R and 676Z and the coliphage T4 were used as model phages. They were tested in vivo in mice, ex vivo in human sera, and on plastic surfaces designed for ELISAs. T4 phage was injected intravenously into pre-immunized mice. The phage was completely neutralized by specific antibodies within 5 h (0 pfu/ml of serum, as determined by the plaque assay), but it was still detected by qPCR in the amount of approximately 107 pfu/ml of serum. This demonstrates a substantial timelapse between "microbiological disappearance" and true clearance of phage particles from the circulation. In human sera ex vivo, qPCR was also able to detect neutralized phage particles that were not detected by the standard plaque assay. The investigated bacteriophages differed considerably in their ability to immobilize on plastic surfaces: this difference was greater than one order of magnitude, as shown by qPCR of phage recovered from plastic plates. The ELISA did not detect differences in phage binding to plates. Major limitations of qPCR are possible inhibitors of the PCR reaction or free phage DNA, which need to be considered in procedures of phage sample preparation for qPCR testing. We propose that phage pharmacokinetic and pharmacodynamic studies should not rely merely on detection of antibacterial activity of a phage. Real-time qPCR can be an alternative for phage detection, especially in immunological studies of bacteriophages. It can also be useful for studies of phage-based drug nanocarriers or biosensors.
Collapse
Affiliation(s)
- Anna Kłopot
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Adriana Zakrzewska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Dorota Lecion
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joanna M Majewska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marek A Harhala
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Karolina Lahutta
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Zuzanna Kaźmierczak
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Łukasz Łaczmański
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Research and Development Center, Regional Specialist Hospital, Wrocław, Poland
| | - Marlena Kłak
- Research and Development Center, Regional Specialist Hospital, Wrocław, Poland
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Research and Development Center, Regional Specialist Hospital, Wrocław, Poland
| |
Collapse
|