1
|
Grosser MR, Sites SK, Murata MM, Lopez Y, Chamusco KC, Love Harriage K, Grosser JW, Graham JH, Gmitter FG, Chase CD. Plant mitochondrial introns as genetic markers - conservation and variation. FRONTIERS IN PLANT SCIENCE 2023; 14:1116851. [PMID: 37021319 PMCID: PMC10067590 DOI: 10.3389/fpls.2023.1116851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Plant genomes are comprised of nuclear, plastid and mitochondrial components characterized by different patterns of inheritance and evolution. Genetic markers from the three genomes provide complementary tools for investigations of inheritance, genetic relationships and phenotypic contributions. Plant mitochondrial genomes are challenging for universal marker development because they are highly variable in terms of size, gene order and intergenic sequences and highly conserved with respect to protein-coding sequences. PCR amplification of introns with primers that anneal to conserved, flanking exons is effective for the development of polymorphic nuclear genome markers. The potential for plant mitochondrial intron polymorphisms to distinguish between congeneric species or intraspecific varieties has not been systematically investigated and is possibly constrained by requirements for intron secondary structure and interactions with co-evolved organelle intron splicing factors. To explore the potential for broadly applicable plant mitochondrial intron markers, PCR primer sets based upon conserved sequences flanking 11 introns common to seven angiosperm species were tested across a range of plant orders. PCR-amplified introns were screened for indel polymorphisms among a group of cross-compatible Citrus species and relatives; two Raphanus sativus mitotypes; representatives of the two Phaseolus vulgaris gene pools; and congeneric pairs of Cynodon, Cenchrus, Solanum, and Vaccinium species. All introns were successfully amplified from each plant entry. Length polymorphisms distinguishable by gel electrophoresis were common among genera but infrequent within genera. Sequencing of three introns amplified from 16 entries identified additional short indel polymorphisms and nucleotide substitutions that separated Citrus, Cynodon, Cenchrus and Vaccinium congeners, but failed to distinguish Solanum congeners or representatives of the Phaseolus vulgaris major gene pools. The ability of primer sets to amplify a wider range of plant species' introns and the presence of intron polymorphisms that distinguish congeners was confirmed by in silico analysis. While mitochondrial intron variation is limited in comparison to nuclear introns, these exon-based primer sets provide robust tools for the amplification of mitochondrial introns across a wide range of plant species wherein useful polymorphisms can be identified.
Collapse
Affiliation(s)
- Melinda R. Grosser
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Samantha K. Sites
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Mayara M. Murata
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Yolanda Lopez
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Karen C. Chamusco
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Kyra Love Harriage
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - James H. Graham
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Fred G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Christine D. Chase
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Price DC, Bhattacharya D. Robust Dinoflagellata phylogeny inferred from public transcriptome databases. JOURNAL OF PHYCOLOGY 2017; 53:725-729. [PMID: 28273342 DOI: 10.1111/jpy.12529] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/24/2017] [Indexed: 05/13/2023]
Abstract
Dinoflagellates are dominant members of the plankton and play key roles in ocean ecosystems as primary producers, predators, parasites, coral photobionts, and causative agents of algal blooms that produce toxins harmful to humans and commercial fisheries. These unicellular protists exhibit remarkable trophic and morphological diversity and include species with some of the largest reported nuclear genomes. Despite their high ecological and economic importance, comprehensive genome (or transcriptome) based dinoflagellate trees of life are few in number. To address this issue, we used recently generated public sequencing data, including from the Moore Microbial Eukaryote Transcriptome Sequencing Project, to identify dinoflagellate-specific ortholog groups. These orthologs were combined to create a broadly sampled and highly resolved phylogeny of dinoflagellates. Our results emphasize the scope and utility of public sequencing databases in creating broad and robust phylogenies for large and complex taxonomic lineages, while also providing unique insights into the evolution of thecate dinoflagellates.
Collapse
Affiliation(s)
- Dana C Price
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, 08901, USA
| |
Collapse
|
3
|
Huang W, Tsai L, Li Y, Hua N, Sun C, Wei C. Widespread of horizontal gene transfer in the human genome. BMC Genomics 2017; 18:274. [PMID: 28376762 PMCID: PMC5379729 DOI: 10.1186/s12864-017-3649-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/21/2017] [Indexed: 01/07/2023] Open
Abstract
Background A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. Results From the pair-wise alignments between human genome and 53 vertebrate genomes, 1,467 human genome regions (2.6 M bases) from all chromosomes were found to be more conserved with non-mammals than with most mammals. These human genome regions involve 642 known genes, which are enriched with ion binding. Compared to known horizontal gene transfer regions in the human genome, there were few overlapping regions, which indicated horizontal gene transfer is more common than we expected in the human genome. Conclusions Horizontal gene transfer impacts hundreds of human genes and this study provided insight into potential mechanisms of HGT in the human genome.
Collapse
Affiliation(s)
- Wenze Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lillian Tsai
- Harvard College, Harvard University, Cambridge, 02138, MA, USA
| | - Yulong Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Nan Hua
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai, 201203, China
| | - Chen Sun
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai, 201203, China
| | - Chaochun Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China. .,Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Pudong District, Shanghai, 201203, China.
| |
Collapse
|
4
|
Gagat P, Mackiewicz P. Cymbomonas tetramitiformis - a peculiar prasinophyte with a taste for bacteria sheds light on plastid evolution. Symbiosis 2016; 71:1-7. [PMID: 28066124 PMCID: PMC5167767 DOI: 10.1007/s13199-016-0464-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022]
Abstract
Cymbomonas tetramitiformis is a peculiar green alga that unites in one cell the abilities of photosynthesis and phagocytosis, which makes it a very useful model for the study of the evolution of plastid endosymbiosis. We have pondered over this issue and propose an evolutionary scenario of trophic strategies in eukaryotes, including primary and secondary plastid endosymbioses. C. tetramitiformis is a prototroph, just like the common ancestor of Archaeplastida was, and can synthesize most small organic molecules contrary to other eukaryotic phagotrophs, e.g. some metazoans, amoebozoans, and ciliates, which have not evolved tight endosymbiotic relationships. In order to establish a permanent photosynthetic endosymbiont they do not have to become prototrophs, but have to acquire the genes necessary for plastid retention via horizontal (including endosymbiotic) gene transfer. Such processes occurred successfully in the ancestors of eukaryotes with permanent secondary plastids and thus led to their great diversification. The preservation of phagocytosis in Cymbomonas (and some other prasinophytes as well) seems to result from nutrient deficiency in their oligotrophic habitats. This forces them to supplement their diet with phagocytized prey, in contrasts to the thecate amoeba Paulinella chromatophora, which also successfully transformed cyanobacteria into permanent organelles. Although Paulinella endosymbionts were acquired very recently in comparison to primary plastids, Paulinella has lost the ability to phagocytose, most probably due to the fact that it inhabits nutrient-rich environments, which renders the phagotrophy nonessential.
Collapse
Affiliation(s)
- Przemysław Gagat
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383 Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383 Wrocław, Poland
| |
Collapse
|
5
|
Kerk D, Silver D, Uhrig RG, Moorhead GBG. "PP2C7s", Genes Most Highly Elaborated in Photosynthetic Organisms, Reveal the Bacterial Origin and Stepwise Evolution of PPM/PP2C Protein Phosphatases. PLoS One 2015; 10:e0132863. [PMID: 26241330 PMCID: PMC4524716 DOI: 10.1371/journal.pone.0132863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/19/2015] [Indexed: 12/22/2022] Open
Abstract
Mg+2/Mn+2-dependent type 2C protein phosphatases (PP2Cs) are ubiquitous in eukaryotes, mediating diverse cellular signaling processes through metal ion catalyzed dephosphorylation of target proteins. We have identified a distinct PP2C sequence class (“PP2C7s”) which is nearly universally distributed in Eukaryotes, and therefore apparently ancient. PP2C7s are by far most prominent and diverse in plants and green algae. Combining phylogenetic analysis, subcellular localization predictions, and a distillation of publically available gene expression data, we have traced the evolutionary trajectory of this gene family in photosynthetic eukaryotes, demonstrating two major sequence assemblages featuring a succession of increasingly derived sub-clades. These display predominant expression moving from an ancestral pattern in photosynthetic tissues toward non-photosynthetic, specialized and reproductive structures. Gene co-expression network composition strongly suggests a shifting pattern of PP2C7 gene functions, including possible regulation of starch metabolism for one homologue set in Arabidopsis and rice. Distinct plant PP2C7 sub-clades demonstrate novel amino terminal protein sequences upon motif analysis, consistent with a shifting pattern of regulation of protein function. More broadly, neither the major events in PP2C sequence evolution, nor the origin of the diversity of metal binding characteristics currently observed in different PP2C lineages, are clearly understood. Identification of the PP2C7 sequence clade has allowed us to provide a better understanding of both of these issues. Phylogenetic analysis and sequence comparisons using Hidden Markov Models strongly suggest that PP2Cs originated in Bacteria (Group II PP2C sequences), entered Eukaryotes through the ancestral mitochondrial endosymbiosis, elaborated in Eukaryotes, then re-entered Bacteria through an inter-domain gene transfer, ultimately producing bacterial Group I PP2C sequences. A key evolutionary event, occurring first in ancient Eukaryotes, was the acquisition of a conserved aspartate in classic Motif 5. This has been inherited subsequently by PP2C7s, eukaryotic PP2Cs and bacterial Group I PP2Cs, where it is crucial to the formation of a third metal binding pocket, and catalysis.
Collapse
Affiliation(s)
- David Kerk
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Dylan Silver
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - R. Glen Uhrig
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Greg B. G. Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
6
|
Abstract
Discoveries in cytogenetics, molecular biology, and genomics have revealed that genome change is an active cell-mediated physiological process. This is distinctly at variance with the pre-DNA assumption that genetic changes arise accidentally and sporadically. The discovery that DNA changes arise as the result of regulated cell biochemistry means that the genome is best modelled as a read-write (RW) data storage system rather than a read-only memory (ROM). The evidence behind this change in thinking and a consideration of some of its implications are the subjects of this article. Specific points include the following: cells protect themselves from accidental genome change with proofreading and DNA damage repair systems; localized point mutations result from the action of specialized trans-lesion mutator DNA polymerases; cells can join broken chromosomes and generate genome rearrangements by non-homologous end-joining (NHEJ) processes in specialized subnuclear repair centres; cells have a broad variety of natural genetic engineering (NGE) functions for transporting, diversifying and reorganizing DNA sequences in ways that generate many classes of genomic novelties; natural genetic engineering functions are regulated and subject to activation by a range of challenging life history events; cells can target the action of natural genetic engineering functions to particular genome locations by a range of well-established molecular interactions, including protein binding with regulatory factors and linkage to transcription; and genome changes in cancer can usefully be considered as consequences of the loss of homeostatic control over natural genetic engineering functions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Mira NP, Münsterkötter M, Dias-Valada F, Santos J, Palma M, Roque FC, Guerreiro JF, Rodrigues F, Sousa MJ, Leão C, Güldener U, Sá-Correia I. The genome sequence of the highly acetic acid-tolerant Zygosaccharomyces bailii-derived interspecies hybrid strain ISA1307, isolated from a sparkling wine plant. DNA Res 2014; 21:299-313. [PMID: 24453040 PMCID: PMC4060950 DOI: 10.1093/dnares/dst058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In this work, it is described the sequencing and annotation of the genome of the yeast strain ISA1307, isolated from a sparkling wine continuous production plant. This strain, formerly considered of the Zygosaccharomyces bailii species, has been used to study Z. bailii physiology, in particular, its extreme tolerance to acetic acid stress at low pH. The analysis of the genome sequence described in this work indicates that strain ISA1307 is an interspecies hybrid between Z. bailii and a closely related species. The genome sequence of ISA1307 is distributed through 154 scaffolds and has a size of around 21.2 Mb, corresponding to 96% of the genome size estimated by flow cytometry. Annotation of ISA1307 genome includes 4385 duplicated genes (∼90% of the total number of predicted genes) and 1155 predicted single-copy genes. The functional categories including a higher number of genes are ‘Metabolism and generation of energy’, ‘Protein folding, modification and targeting’ and ‘Biogenesis of cellular components’. The knowledge of the genome sequence of the ISA1307 strain is expected to contribute to accelerate systems-level understanding of stress resistance mechanisms in Z. bailii and to inspire and guide novel biotechnological applications of this yeast species/strain in fermentation processes, given its high resilience to acidic stress. The availability of the ISA1307 genome sequence also paves the way to a better understanding of the genetic mechanisms underlying the generation and selection of more robust hybrid yeast strains in the stressful environment of wine fermentations.
Collapse
Affiliation(s)
- Nuno P Mira
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| | - Filipa Dias-Valada
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Júlia Santos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal
| | - Margarida Palma
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Filipa C Roque
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Joana F Guerreiro
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA)/Department of Biology, University of Minho, Braga 4710-057, Portugal
| | - Cecília Leão
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| | - Isabel Sá-Correia
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
8
|
Uhrig RG, Kerk D, Moorhead GB. Evolution of bacterial-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer. PLANT PHYSIOLOGY 2013; 163:1829-43. [PMID: 24108212 PMCID: PMC3850205 DOI: 10.1104/pp.113.224378] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein phosphorylation is a reversible regulatory process catalyzed by the opposing reactions of protein kinases and phosphatases, which are central to the proper functioning of the cell. Dysfunction of members in either the protein kinase or phosphatase family can have wide-ranging deleterious effects in both metazoans and plants alike. Previously, three bacterial-like phosphoprotein phosphatase classes were uncovered in eukaryotes and named according to the bacterial sequences with which they have the greatest similarity: Shewanella-like (SLP), Rhizobiales-like (RLPH), and ApaH-like (ALPH) phosphatases. Utilizing the wealth of data resulting from recently sequenced complete eukaryotic genomes, we conducted database searching by hidden Markov models, multiple sequence alignment, and phylogenetic tree inference with Bayesian and maximum likelihood methods to elucidate the pattern of evolution of eukaryotic bacterial-like phosphoprotein phosphatase sequences, which are predominantly distributed in photosynthetic eukaryotes. We uncovered a pattern of ancestral mitochondrial (SLP and RLPH) or archaeal (ALPH) gene entry into eukaryotes, supplemented by possible instances of lateral gene transfer between bacteria and eukaryotes. In addition to the previously known green algal and plant SLP1 and SLP2 protein forms, a more ancestral third form (SLP3) was found in green algae. Data from in silico subcellular localization predictions revealed class-specific differences in plants likely to result in distinct functions, and for SLP sequences, distinctive and possibly functionally significant differences between plants and nonphotosynthetic eukaryotes. Conserved carboxyl-terminal sequence motifs with class-specific patterns of residue substitutions, most prominent in photosynthetic organisms, raise the possibility of complex interactions with regulatory proteins.
Collapse
|
9
|
Horizontal Gene Transfer in Eukaryotes: Fungi-to-Plant and Plant-to-Plant Transfers of Organellar DNA. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
11
|
Boulouis A, Raynaud C, Bujaldon S, Aznar A, Wollman FA, Choquet Y. The nucleus-encoded trans-acting factor MCA1 plays a critical role in the regulation of cytochrome f synthesis in Chlamydomonas chloroplasts. THE PLANT CELL 2011; 23:333-49. [PMID: 21216944 PMCID: PMC3051260 DOI: 10.1105/tpc.110.078170] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/26/2010] [Accepted: 12/07/2010] [Indexed: 05/18/2023]
Abstract
Organelle gene expression is characterized by nucleus-encoded trans-acting factors that control posttranscriptional steps in a gene-specific manner. As a typical example, in Chlamydomonas reinhardtii, expression of the chloroplast petA gene encoding cytochrome f, a major subunit of the cytochrome b(6)f complex, depends on MCA1 and TCA1, required for the accumulation and translation of the petA mRNA. Here, we show that these two proteins associate in high molecular mass complexes that also contain the petA mRNA. We demonstrate that MCA1 is degraded upon interaction with unassembled cytochrome f that transiently accumulates during the biogenesis of the cytochrome b(6)f complex. Strikingly, this interaction relies on the very same residues that form the repressor motif involved in the Control by Epistasy of cytochrome f Synthesis (CES), a negative feedback mechanism that downregulates cytochrome f synthesis when its assembly within the cytochrome b(6)f complex is compromised. Based on these new findings, we present a revised picture for the CES regulation of petA mRNA translation that involves proteolysis of the translation enhancer MCA1, triggered by its interaction with unassembled cytochrome f.
Collapse
Affiliation(s)
| | | | | | | | | | - Yves Choquet
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
12
|
A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum. BMC Evol Biol 2010; 10:191. [PMID: 20565933 PMCID: PMC3055265 DOI: 10.1186/1471-2148-10-191] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 06/21/2010] [Indexed: 11/30/2022] Open
Abstract
Background Plastid replacements through secondary endosymbioses include massive transfer of genes from the endosymbiont to the host nucleus and require a new targeting system to enable transport of the plastid-targeted proteins across 3-4 plastid membranes. The dinoflagellates are the only eukaryotic lineage that has been shown to have undergone several plastid replacement events, and this group is thus highly relevant for studying the processes involved in plastid evolution. In this study, we analyzed the phylogenetic origin and N-terminal extensions of plastid-targeted proteins from Lepidodinium chlorophorum, a member of the only dinoflagellate genus that harbors a green secondary plastid rather than the red algal-derived, peridinin-containing plastid usually found in photosynthetic dinoflagellates. Results We sequenced 4,746 randomly picked clones from a L. chlorophorum cDNA library. 22 of the assembled genes were identified as genes encoding proteins functioning in plastids. Some of these were of green algal origin. This confirms that genes have been transferred from the plastid to the host nucleus of L. chlorophorum and indicates that the plastid is fully integrated as an organelle in the host. Other nuclear-encoded plastid-targeted protein genes, however, are clearly not of green algal origin, but have been derived from a number of different algal groups, including dinoflagellates, streptophytes, heterokonts, and red algae. The characteristics of N-terminal plastid-targeting peptides of all of these genes are substantially different from those found in peridinin-containing dinoflagellates and green algae. Conclusions L. chlorophorum expresses plastid-targeted proteins with a range of different origins, which probably arose through endosymbiotic gene transfer (EGT) and horizontal gene transfer (HGT). The N-terminal extension of the genes is different from the extensions found in green alga and other dinoflagellates (peridinin- and haptophyte plastids). These modifications have likely enabled the mosaic proteome of L. chlorophorum.
Collapse
|
13
|
Shapiro JA. Mobile DNA and evolution in the 21st century. Mob DNA 2010; 1:4. [PMID: 20226073 PMCID: PMC2836002 DOI: 10.1186/1759-8753-1-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 01/25/2010] [Indexed: 01/05/2023] Open
Abstract
Scientific history has had a profound effect on the theories of evolution. At the beginning of the 21st century, molecular cell biology has revealed a dense structure of information-processing networks that use the genome as an interactive read-write (RW) memory system rather than an organism blueprint. Genome sequencing has documented the importance of mobile DNA activities and major genome restructuring events at key junctures in evolution: exon shuffling, changes in cis-regulatory sites, horizontal transfer, cell fusions and whole genome doublings (WGDs). The natural genetic engineering functions that mediate genome restructuring are activated by multiple stimuli, in particular by events similar to those found in the DNA record: microbial infection and interspecific hybridization leading to the formation of allotetraploids. These molecular genetic discoveries, plus a consideration of how mobile DNA rearrangements increase the efficiency of generating functional genomic novelties, make it possible to formulate a 21st century view of interactive evolutionary processes. This view integrates contemporary knowledge of the molecular basis of genetic change, major genome events in evolution, and stimuli that activate DNA restructuring with classical cytogenetic understanding about the role of hybridization in species diversification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Science W123B, 929 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|