1
|
Li X, Han YR, Xuefeng X, Ma YX, Xing GS, Yang ZW, Zhang Z, Shi L, Wu XL. Lentivirus-mediated short hairpin RNA interference of CENPK inhibits growth of colorectal cancer cells with overexpression of Cullin 4A. World J Gastroenterol 2022; 28:5420-5443. [PMID: 36312839 PMCID: PMC9611705 DOI: 10.3748/wjg.v28.i37.5420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 09/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. The identification of novel diagnostic and prognostic biomarkers for CRC is a key research imperative. Immunohistochemical analysis has revealed high expression of centromere protein K (CENPK) in CRC. However, the role of CENPK in the progression of CRC is not well characterized. AIM To evaluate the effects of knockdown of CENPK and overexpression of Cullin 4A (CUL4A) in RKO and HCT116 cells. METHODS Human colon cancer samples were collected and tested using a human gene expression chip. We identified CENPK as a potential oncogene for CRC based on bioinformatics analysis. In vitro experiments verified the function of this gene. We investigated the expression of CENPK in RKO and HCT116 cells using quantitative polymerase chain reaction (qPCR), western blot, and flow cytometry. The effect of short hairpin RNA (shRNA) virus-infected RKO cells on tumor growth was evaluated in vivo using quantitative analysis of fluorescence imaging. To evaluate the effects of knockdown of CENPK and overexpression of CUL4A in RKO and HCT116 cells, we performed a series of in vitro experiments, using qPCR, western blot, MTT assay, and flow cytometry. RESULTS We demonstrated overexpression of CENPK in human colon cancer samples. CENPK was an independent risk factor in patients with CRC. The downstream genes FBX32, CUL4A, and Yes-associated protein isoform 1 were examined to evaluate the regulatory action of CENPK in RKO cells. Significantly delayed xenograft tumor emergence, slower growth rate, and lower final tumor weight and volume were observed in the CENPK short hairpin RNA virus infected group compared with the CENPK negative control group. The CENPK gene interference inhibited the proliferation of RKO cells in vitro and in vivo. The lentivirus-mediated shRNA interference of CENPK inhibited the proliferation of RKO and HCT116 colon cancer cells, with overexpression of the CUL4A. CONCLUSION We indicated a potential role of CENPK in promoting tumor proliferation, and it may be a novel diagnostic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Xian Li
- Clinical Medical Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Yi-Ru Han
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Xuefeng Xuefeng
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Yong-Xiang Ma
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Guo-Sheng Xing
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Zhi-Wen Yang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Zhen Zhang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Lin Shi
- Department of Pathology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Xin-Lin Wu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| |
Collapse
|
2
|
Riemersma IW, Havekes R, Kas MJH. Spatial and Temporal Gene Function Studies in Rodents: Towards Gene-Based Therapies for Autism Spectrum Disorder. Genes (Basel) 2021; 13:28. [PMID: 35052369 PMCID: PMC8774890 DOI: 10.3390/genes13010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is characterized by differences in social interaction, repetitive behaviors, restricted interests, and sensory differences beginning early in life. Especially sensory symptoms are highly correlated with the severity of other behavioral differences. ASD is a highly heterogeneous condition on multiple levels, including clinical presentation, genetics, and developmental trajectories. Over a thousand genes have been implicated in ASD. This has facilitated the generation of more than two hundred genetic mouse models that are contributing to understanding the biological underpinnings of ASD. Since the first symptoms already arise during early life, it is especially important to identify both spatial and temporal gene functions in relation to the ASD phenotype. To further decompose the heterogeneity, ASD-related genes can be divided into different subgroups based on common functions, such as genes involved in synaptic function. Furthermore, finding common biological processes that are modulated by this subgroup of genes is essential for possible patient stratification and the development of personalized early treatments. Here, we review the current knowledge on behavioral rodent models of synaptic dysfunction by focusing on behavioral phenotypes, spatial and temporal gene function, and molecular targets that could lead to new targeted gene-based therapy.
Collapse
Affiliation(s)
| | | | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; (I.W.R.); (R.H.)
| |
Collapse
|
3
|
Abstract
![]()
Sirtuin 6 (SIRT6)
is an NAD+-dependent protein deacylase
and mono-ADP-ribosyltransferase of the sirtuin family with a wide
substrate specificity. In vitro and in vivo studies have indicated that SIRT6 overexpression or activation has
beneficial effects for cellular processes such as DNA repair, metabolic
regulation, and aging. On the other hand, SIRT6 has contrasting roles
in cancer, acting either as a tumor suppressor or promoter in a context-specific
manner. Given its central role in cellular homeostasis, SIRT6 has
emerged as a promising target for the development of small-molecule
activators and inhibitors possessing a therapeutic potential in diseases
ranging from cancer to age-related disorders. Moreover, specific modulators
allow the molecular details of SIRT6 activity to be scrutinized and
further validate the enzyme as a pharmacological target. In this Perspective,
we summarize the current knowledge about SIRT6 pharmacology and medicinal
chemistry and describe the features of the activators and inhibitors
identified so far.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, P.le A Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, P.le A Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Veatch OJ, Butler MG, Elsea SH, Malow BA, Sutcliffe JS, Moore JH. An Automated Functional Annotation Pipeline That Rapidly Prioritizes Clinically Relevant Genes for Autism Spectrum Disorder. Int J Mol Sci 2020; 21:ijms21239029. [PMID: 33261099 PMCID: PMC7734579 DOI: 10.3390/ijms21239029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
Human genetic studies have implicated more than a hundred genes in Autism Spectrum Disorder (ASD). Understanding how variation in implicated genes influence expression of co-occurring conditions and drug response can inform more effective, personalized approaches for treatment of individuals with ASD. Rapidly translating this information into the clinic requires efficient algorithms to sort through the myriad of genes implicated by rare gene-damaging single nucleotide and copy number variants, and common variation detected in genome-wide association studies (GWAS). To pinpoint genes that are more likely to have clinically relevant variants, we developed a functional annotation pipeline. We defined clinical relevance in this project as any ASD associated gene with evidence indicating a patient may have a complex, co-occurring condition that requires direct intervention (e.g., sleep and gastrointestinal disturbances, attention deficit hyperactivity, anxiety, seizures, depression), or is relevant to drug development and/or approaches to maximizing efficacy and minimizing adverse events (i.e., pharmacogenomics). Starting with a list of all candidate genes implicated in all manifestations of ASD (i.e., idiopathic and syndromic), this pipeline uses databases that represent multiple lines of evidence to identify genes: (1) expressed in the human brain, (2) involved in ASD-relevant biological processes and resulting in analogous phenotypes in mice, (3) whose products are targeted by approved pharmaceutical compounds or possessing pharmacogenetic variation and (4) whose products directly interact with those of genes with variants recommended to be tested for by the American College of Medical Genetics (ACMG). Compared with 1000 gene sets, each with a random selection of human protein coding genes, more genes in the ASD set were annotated for each category evaluated (p ≤ 1.99 × 10−2). Of the 956 ASD-implicated genes in the full set, 18 were flagged based on evidence in all categories. Fewer genes from randomly drawn sets were annotated in all categories (x = 8.02, sd = 2.56, p = 7.75 × 10−4). Notably, none of the prioritized genes are represented among the 59 genes compiled by the ACMG, and 78% had a pathogenic or likely pathogenic variant in ClinVar. Results from this work should rapidly prioritize potentially actionable results from genetic studies and, in turn, inform future work toward clinical decision support for personalized care based on genetic testing.
Collapse
Affiliation(s)
- Olivia J. Veatch
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, MO 66160, USA;
- Correspondence:
| | - Merlin G. Butler
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Sarah H. Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Beth A. Malow
- Sleep Disorders Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - James S. Sutcliffe
- Vanderbilt Genetics Institute, Department of Molecular Physiology & Biophysics, Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Jason H. Moore
- Department of Biostatistics, Epidemiology, & Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
5
|
Zhong Y, Dambach DM, Maher JM. Using Genetically Modified Rodent Models in Drug Development to Explore Target Physiology and Potential Drug Effects. Vet Pathol 2018; 55:193-194. [DOI: 10.1177/0300985817747328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yu Zhong
- Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Donna M. Dambach
- Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | | |
Collapse
|
6
|
Du S, Qin W, Leng H, Chen Z, Zhang T. Construction of a recombinant lentivirus-mediated shRNA expression vector targeting the human PSMD10 gene and validation of RNAi efficiency in RPMI‑8226 multiple myeloma cells. Oncol Rep 2017; 38:809-818. [PMID: 28677774 PMCID: PMC5561814 DOI: 10.3892/or.2017.5770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/09/2017] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is one of the most common malignant blood cancers. Previous studies have reported that proteasome 26S subunit non-ATPase 10 (PSMD10) is an oncoprotein with complex roles in hepatocellular carcinoma and other malignant tumors. Notably, research on the relationship between PSMD10 and tumorigenesis of MM has rarely been reported. The present study was designed to explore the possibility of PSMD10 as a therapeutic target in the treatment of MM, and the use of RNA interference (RNAi) to determine the function PSMD10. A recombinant lentivirus-mediated short hairpin RNA (shRNA) targeting human PSMD10 mRNA was constructed and used to decrease endogenous PSMD10 expression in the MM RPMI-8226 cell line in vitro. Expression of the PSMD10-targeting shRNA in RPMI-8226 cells transduced with the recombinant vector could be tracked by observing the expression of green fluorescent protein after infection. A transient transgenic RPMI-8226 cell line was generated by transducing cells with the packaged viral particles. Western blot analysis indicated that the protein levels of PSMD10 in the PSMD10-shRNA MM cells were significantly lower than those in the cells transduced with the negative control shRNA. Notably, RT-qPCR analysis did not reveal a marked change in the PSMD10 mRNA level; thus, the knockdown effect of the PSMD10-shRNA may occur during translation. Furthermore, apoptosis of MM cells was increased by silencing PSMD10 expression. Overall, the results demonstrated that the lentivirus-mediated shRNA vector-based RNAi expression system is an efficient method to silence PSMD10 gene expression in the MM RPMI-8226 cell line. It may provide a basis to study the role of PSMD10 in tumor cells, and may be a reliable gene therapy strategy in the clinic.
Collapse
Affiliation(s)
- Siyue Du
- Department of Hematology, Huashan Hospital Affiliated to Fudan University, Jingan, Shanghai, P.R. China
| | - Wenjiao Qin
- Department of Hematology, Huashan Hospital Affiliated to Fudan University, Jingan, Shanghai, P.R. China
| | - Haiyan Leng
- Department of Hematology, Huashan Hospital Affiliated to Fudan University, Jingan, Shanghai, P.R. China
| | - Zi Chen
- Department of Hematology, Huashan Hospital Affiliated to Fudan University, Jingan, Shanghai, P.R. China
| | - Tao Zhang
- Department of Laboratory Medicine, Huashan Hospital Affiliated to Fudan University, Jingan, Shanghai, P.R. China
| |
Collapse
|
7
|
Kornegay JN, Bogan DJ, Bogan JR, Dow JL, Wang J, Fan Z, Liu N, Warsing LC, Grange RW, Ahn M, Balog-Alvarez CJ, Cotten SW, Willis MS, Brinkmeyer-Langford C, Zhu H, Palandra J, Morris CA, Styner MA, Wagner KR. Dystrophin-deficient dogs with reduced myostatin have unequal muscle growth and greater joint contractures. Skelet Muscle 2016; 6:14. [PMID: 27047655 PMCID: PMC4819282 DOI: 10.1186/s13395-016-0085-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/24/2016] [Indexed: 09/02/2023] Open
Abstract
Background Myostatin (Mstn) is a negative regulator of muscle growth whose inhibition promotes muscle growth and regeneration. Dystrophin-deficient mdx mice in which myostatin is knocked out or inhibited postnatally have a less severe phenotype with greater total mass and strength and less fibrosis and fatty replacement of muscles than mdx mice with wild-type myostatin expression. Dogs with golden retriever muscular dystrophy (GRMD) have previously been noted to have increased muscle mass and reduced fibrosis after systemic postnatal myostatin inhibition. Based partly on these results, myostatin inhibitors are in development for use in human muscular dystrophies. However, persisting concerns regarding the effects of long-term and profound myostatin inhibition will not be easily or imminently answered in clinical trials. Methods To address these concerns, we developed a canine (GRippet) model by crossbreeding dystrophin-deficient GRMD dogs with Mstn-heterozygous (Mstn+/−) whippets. A total of four GRippets (dystrophic and Mstn+/−), three GRMD (dystrophic and Mstn wild-type) dogs, and three non-dystrophic controls from two litters were evaluated. Results Myostatin messenger ribonucleic acid (mRNA) and protein levels were downregulated in both GRMD and GRippet dogs. GRippets had more severe postural changes and larger (more restricted) maximal joint flexion angles, apparently due to further exaggeration of disproportionate effects on muscle size. Flexors such as the cranial sartorius were more hypertrophied on magnetic resonance imaging (MRI) in the GRippets, while extensors, including the quadriceps femoris, underwent greater atrophy. Myostatin protein levels negatively correlated with relative cranial sartorius muscle cross-sectional area on MRI, supporting a role in disproportionate muscle size. Activin receptor type IIB (ActRIIB) expression was higher in dystrophic versus control dogs, consistent with physiologic feedback between myostatin and ActRIIB. However, there was no differential expression between GRMD and GRippet dogs. Satellite cell exhaustion was not observed in GRippets up to 3 years of age. Conclusions Partial myostatin loss may exaggerate selective muscle hypertrophy or atrophy/hypoplasia in GRMD dogs and worsen contractures. While muscle imbalance is not a feature of myostatin inhibition in mdx mice, findings in a larger animal model could translate to human experience with myostatin inhibitors. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0085-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joe N Kornegay
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Daniel J Bogan
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Janet R Bogan
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Jennifer L Dow
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Jiahui Wang
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Zheng Fan
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Naili Liu
- The Hugo W. Moser Research Institute at Kennedy Krieger Institute and Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Leigh C Warsing
- The Hugo W. Moser Research Institute at Kennedy Krieger Institute and Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Robert W Grange
- Department of Human Nutrition, Foods and Exercise, Virginia Tech University, Blacksburg, VA 24061 USA
| | - Mihye Ahn
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Cynthia J Balog-Alvarez
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Steven W Cotten
- Department of Pathology, The Ohio State University, Columbus, OH 43210 USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Candice Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Joe Palandra
- Rare Disease Research Unit, Pfizer, Inc., Cambridge Park Drive, Cambridge, MA USA
| | - Carl A Morris
- Rare Disease Research Unit, Pfizer, Inc., Cambridge Park Drive, Cambridge, MA USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Kathryn R Wagner
- The Hugo W. Moser Research Institute at Kennedy Krieger Institute and Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
8
|
Canine-Inherited Dystrophinopathies and Centronuclear Myopathies. REGENERATIVE MEDICINE FOR DEGENERATIVE MUSCLE DISEASES 2016. [DOI: 10.1007/978-1-4939-3228-3_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Dambach DM, Misner D, Brock M, Fullerton A, Proctor W, Maher J, Lee D, Ford K, Diaz D. Safety Lead Optimization and Candidate Identification: Integrating New Technologies into Decision-Making. Chem Res Toxicol 2015; 29:452-72. [DOI: 10.1021/acs.chemrestox.5b00396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Donna M. Dambach
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dinah Misner
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Mathew Brock
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Aaron Fullerton
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - William Proctor
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Jonathan Maher
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dong Lee
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Kevin Ford
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dolores Diaz
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| |
Collapse
|
10
|
Structural determinants of host specificity of complement Factor H recruitment by Streptococcus pneumoniae. Biochem J 2015; 465:325-35. [PMID: 25330773 DOI: 10.1042/bj20141069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many human pathogens have strict host specificity, which affects not only their epidemiology but also the development of animal models and vaccines. Complement Factor H (FH) is recruited to pneumococcal cell surface in a human-specific manner via the N-terminal domain of the pneumococcal protein virulence factor choline-binding protein A (CbpAN). FH recruitment enables Streptococcus pneumoniae to evade surveillance by human complement system and contributes to pneumococcal host specificity. The molecular determinants of host specificity of complement evasion are unknown. In the present study, we show that a single human FH (hFH) domain is sufficient for tight binding of CbpAN, present the crystal structure of the complex and identify the critical structural determinants for host-specific FH recruitment. The results offer new approaches to the development of better animal models for pneumococcal infection and redesign of the virulence factor for pneumococcal vaccine development and reveal how FH recruitment can serve as a mechanism for both pneumococcal complement evasion and adherence.
Collapse
|
11
|
Chiba K. Perspective of Humanized Mouse Models for Assessing PK/PD and Toxic Profile of Drug Candidates in Preclinical Study. Drug Metab Pharmacokinet 2014. [DOI: 10.2133/dmpk.dmpk-14-pf-901] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
The Cinderella Effect: Searching for the Best Fit between Mouse Models and Human Diseases. J Invest Dermatol 2013; 133:2509-2513. [DOI: 10.1038/jid.2013.238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/12/2013] [Accepted: 04/27/2013] [Indexed: 01/09/2023]
|
13
|
Zhao B, Yang C, Yang S, Gao Y, Wang J. Construction of conditional lentivirus-mediated shRNA vector targeting the human Mirk gene and identification of RNAi efficiency in rhabdomyosarcoma RD cells. Int J Oncol 2013; 43:1253-9. [PMID: 23913162 DOI: 10.3892/ijo.2013.2048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/23/2013] [Indexed: 11/05/2022] Open
Abstract
Rhabdomyosarcoma is the most common malignant soft tissue tumor in children. It has been demonstrated that Mirk as an activated protein kinase is overexpressed in rhabdomyosarcoma cells, which may be correlated with tumorigenesis. The aim of the present study was to explore the possibility of Mirk gene as a therapeutic target for the treatment of rhabdomyosarcoma, and the use of RNA interference in a temporally and spatially restricted manner to study the function of the target gene would be highly beneficial. To address this problem, a conditional lentivirus-mediated short hairpin RNA targeting human Mirk gene was constructed and employed to reduce endogenous Mirk expression in the rhabdomyosarcoma RD cell line in vitro. The expression of Mirk shRNA in RD cells transduced with this recombinant vector could be tracked with the expression of red fluorescent protein by the administration of doxycycline. A stable transgenic RD line was generated by transducing RD lines with the packaging viral particles. Quantitative PCR and western blot analysis indicated that the mRNA and protein levels of Mirk in the transgenic RD cells were significantly lower compared to those in the controls. In addition, the increasing apoptosis of RD cells induced by silencing of the Mirk gene was also observed. Overall, the results demonstrated that this recombinant vector-based RNAi expression system is an efficient approach to knockdown Mirk gene expression in the rhabdomyosarcoma RD cell line, which could, thereby, provide both a protocol to study the role of Mirk gene in tumor cells and a safer gene therapy in the clinic.
Collapse
Affiliation(s)
- Boming Zhao
- Department of Orthopaedic Surgery, The No. 1 People's Hospital of Jingzhou, Jingzhou, P.R. China
| | | | | | | | | |
Collapse
|
14
|
Ketamine does not produce relief of neuropathic pain in mice lacking the β-common receptor (CD131). PLoS One 2013; 8:e71326. [PMID: 23936499 PMCID: PMC3731332 DOI: 10.1371/journal.pone.0071326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/27/2013] [Indexed: 11/19/2022] Open
Abstract
Neuropathic pain (NP) is a debilitating condition associated with traumatic, metabolic, autoimmune and neurological etiologies. Although the triggers for NP are diverse, there are common underlying pathways, including activation of immune cells in the spinal cord and up-regulation of the N-methyl-D-aspartate receptor (NMDAR). Ketamine, a well-known NDMAR antagonist, reduces neuropathic pain in a sustained manner. Recent study has shown that the novel 11-amino acid peptide erythropoietin derivative ARA290 produces a similar, long-lasting relief of NP. Here, we show that both drugs also have similar effects on the expression of mRNA of the NMDAR, as well as that of microglia, astrocytes and chemokine (C-C motif) ligand 2, all-important contributors to the development of NP. Although the effects of ketamine and ARA 290 on NP and its molecular mediators suggest a common mechanism of action, ARA 290 has no affinity for the NMDAR and acts specifically via the innate repair receptor (IRR) involved in tissue protection. We speculated therefore, that the IRR might be critically involved in the action of ketamine on neuropathic pain. To evaluate this, we studied the effects of ketamine and ARA 290 on acute pain, side effects, and allodynia following a spared nerve injury model in mice lacking the β-common receptor (βcR), a structural component of the IRR. Ketamine (50 mg/kg) and ARA 290 (30 µg/kg) produced divergent effects on acute pain: ketamine produced profound antinociception accompanied with psychomotor side effects, but ARA290 did not, in both normal and knock out mice. In contrast, while both drugs were antiallodynic in WT mice, they had no effect on NP in mice lacking the βcR. Together, these results show that an intact IRR is required for the effective treatment of NP with either ketamine or ARA 290, but is not involved in ketamine’s analgesic and side effects.
Collapse
|
15
|
Abstract
Gene silencing by RNA interference (RNAi) has become a standard method for the characterization of gene function in mammalian cells. Short hairpin (sh) RNAs expressed from stably integrated vectors mediate gene knockdown both in cultured cells and in mice, presenting a fast alternative to gene knockout approaches. We describe three strategies to control gene silencing in mice that can be applied to any transcript of interest. This shRNA based approach enables either i) constitutive body-wide knockdown, ii) cell type-specific knockdown controlled by Cre recombinase, or iii) inducible body-wide knockdown controlled by doxycycline. For reliable expression the shRNA vector of interest is inserted into a Rosa26 docking site of ES cells by a site-specific recombinase. These ES cells can then be used to generate shRNA transgenic mice. This technology enables the production of adult knockdown mice within 11 months for an expedite in vivo validation of drug targets.
Collapse
|
16
|
Fowler CD, Kenny PJ. Utility of genetically modified mice for understanding the neurobiology of substance use disorders. Hum Genet 2012; 131:941-57. [PMID: 22190154 PMCID: PMC3977433 DOI: 10.1007/s00439-011-1129-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/11/2011] [Indexed: 01/09/2023]
Abstract
Advances in our ability to modify the mouse genome have enhanced our understanding of the genetic and neurobiological mechanisms contributing to addiction-related behaviors underlying substance use and abuse. These experimentally induced manipulations permit greater spatial and temporal specificity for modification of gene expression within specific cellular populations and during select developmental time periods. In this review, we consider the current mouse genetic model systems that have been employed to understand aspects of addiction and highlight significant conceptual advances achieved related to substance use and abuse. The mouse models reviewed herein include conventional knock-out and knock-in, conditional knockout, transgenic, inducible transgenic, mice suitable for optogenetic control of discrete neuronal populations, and phenotype-selected mice. By establishing a reciprocal investigatory relationship between genetic findings in humans and genomic manipulations in mice, a far better understanding of the discrete neuromechanisms underlying addiction can be achieved, which is likely to provide a strong foundation for developing and validating novel therapeutics for the treatment of substance abuse disorders.
Collapse
Affiliation(s)
- Christie D. Fowler
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA. Laboratory of Behavioral and Molecular Neuroscience, Department of Neuroscience, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA
| | - Paul J. Kenny
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA. Laboratory of Behavioral and Molecular Neuroscience, Department of Neuroscience, The Scripps Research Institute, Scripps, Florida, Jupiter, FL 33458, USA
| |
Collapse
|
17
|
Kleinhammer A, Wurst W, Kühn R. Constitutive and conditional RNAi transgenesis in mice. Methods 2011; 53:430-6. [PMID: 21184828 DOI: 10.1016/j.ymeth.2010.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/30/2010] [Accepted: 12/17/2010] [Indexed: 01/01/2023] Open
|
18
|
Rowntree RK, McNeish JD. Induced pluripotent stem cells: opportunities as research and development tools in 21st century drug discovery. Regen Med 2010; 5:557-68. [PMID: 20632859 DOI: 10.2217/rme.10.36] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs), when compared with transformed, primary or engineered cells, have unique characteristics and advantages that have resulted in the development of important cell-based tools in modern drug discovery. However, a key limitation has been the availability of human ESCs from patients with specific medical needs and the broad range of genetic variation represented worldwide. Induced pluripotent stem (iPS) cells are derived from somatic cells that are reprogrammed to a pluripotent stem cell state and have functional characteristics similar to ESCs. The demonstration that human iPS cells can be derived, with relative ease, through the introduction of transcription factor combinations has allowed the generation of disease-specific iPS cell lines. Therefore, iPS cell technology may deliver robust, human pluripotent cell lines from a wide range of clinical phenotypes and genotypes. Although human iPS cell technology is still a new tool in drug discovery, the promise that this technology will impact the discovery of new therapies can be projected based on the uptake of stem cell applications in biopharmaceutical sciences. Here, the near-term opportunities that iPS cells may deliver to drug discoverers to generate and test hypotheses will be discussed, with a focus on the specific strengths and weaknesses of iPS cell technology. Finally, the future perspective will address novel opportunities iPS cells could uniquely deliver to the preclinical development of new drug therapies.
Collapse
Affiliation(s)
- Rebecca K Rowntree
- Pfizer Regenerative Medicine, 620 Memorial Drive, Cambridge, MA 02139, USA
| | | |
Collapse
|