1
|
Simon L, Reichel LS, Benkhaled BT, Devoisselle JM, Catrouillet S, Eberhardt J, Hoeppener S, Schubert US, Brendel JC, Morille M, Lapinte V, Traeger A. Polyoxazolines with Cholesterol Lipid Anchor for Fast Intracellular Delivery. Macromol Biosci 2024; 24:e2400148. [PMID: 39374348 DOI: 10.1002/mabi.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Indexed: 10/09/2024]
Abstract
Due to the increasing challenges posed by the growing immunity to poly(ethylene glycol) (PEG), there is growing interest in innovative polymer-based materials as viable alternatives. In this study, the advantages of lipids and polymers are combined to allow efficient and rapid cytoplasmic drug delivery. Specifically, poly(2-methyl-2-oxazoline) is modified with a cholesteryl hemisuccinate group as a lipid anchor (CHEMSPOx). The CHEMSPOx is additionally functionalized with a coumarin group (CHEMSPOx-coumarin). Both polymers self-assembled in water into vesicles of ≈100 nm and are successfully loaded with a hydrophobic model drug. The loaded vesicles reveal high cellular internalization across variant cell lines within 1 h at 37 °C as well as 4 °C, albeit to a lesser extent. A kinetic study confirms the fast internalization within 5 min after the sample's addition. Therefore, different internalization pathways are involved, e.g., active uptake but also nonenergy dependent mechanisms. CHEMSPOx and CHEMSPOx-coumarin further demonstrate excellent cyto-, hemo-, and membrane compatibility, as well as a membrane-protecting effect, which underlines their good safety profile for potential biological intravenous application. Overall, CHEMSPOx, as a lipopolyoxazoline, holds great potential for versatile biological applications such as fast and direct intracellular delivery or cellular lysis protection.
Collapse
Affiliation(s)
| | - Liên Sabrina Reichel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | | | | | | | - Juliane Eberhardt
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Johannes Christopher Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Marie Morille
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, France
- Institut universitaire de France (IUF), Paris, France
| | | | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
2
|
Visualizing bioactive ceramides. Chem Phys Lipids 2018; 216:142-151. [PMID: 30266560 DOI: 10.1016/j.chemphyslip.2018.09.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 11/23/2022]
Abstract
In the last 30 years, ceramides have been found to mediate a myriad of biological processes. Ceramides have been recognized as bioactive molecules and their metabolizing enzymes are attractive targets in cancer therapy and other diseases. The molecular mechanism of action of cellular ceramides are still not fully established, with insights into roles through modification of lipid rafts, creation of ceramide platforms, ceramide channels, or through regulation of direct protein effectors such as protein phosphatases and kinases. Recently, the 'Many Ceramides' hypothesis focuses on distinct pools of subcellular ceramides and ceramide species as potential defined bioactive entities. Traditional methods that measure changes in ceramide levels in the whole cell, such as mass spectrometry, fluorescent ceramide analogues, and ceramide antibodies, fail to differentiate specific bioactive species at the subcellular level. However, a few ceramide binding proteins have been reported, and a smaller subgroup within these, have been shown to translocate to ceramide-enriched membranes, revealing these localized pools of bioactive ceramides. In this review we want to discuss and consolidate these works and explore the possibility of defining these binding proteins as new tools are emerging to visualize bioactive ceramides in cells. Our goal is to encourage the scientific community to explore these ceramide partners, to improve techniques to refine the list of these binding partners, making possible the identification of specific domains that recognize and bind ceramides to be used to visualize the 'Many Ceramides' in the cell.
Collapse
|
3
|
Kim CJ, Ueda M, Imai T, Sugiyama J, Kimura S. Tuning the Viscoelasticity of Peptide Vesicles by Adjusting Hydrophobic Helical Blocks Comprising Amphiphilic Polypeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5423-5429. [PMID: 28493724 DOI: 10.1021/acs.langmuir.7b00289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amphiphilic block polypeptides of poly(sarcosine)-b-(l-Val-Aib)6 and poly(sarcosine)-b-(l-Leu-Aib)6 and their stereoisomers were self-assembled in water. Three kinds of binary systems of poly(sarcosine)-b-(l-Leu-Aib)6 with poly(sarcosine)-b-poly(d-Leu-Aib)6, poly(sarcosine)-b-poly(l-Val-Aib)6, or poly(sarcosine)-b-(d-Val-Aib)6 generated vesicles of ca. 200 nm diameter. The viscoelasticity of the vesicle membranes was evaluated by the nanoindentation method using AFM in water. The elasticity of the poly(sarcosine)-b-(l-Leu-Aib)6/poly(sarcosine)-b-poly(d-Leu-Aib)6 vesicle was 11-fold higher than that of the egg yolk liposome but decreased in combinations of the Leu- and Val-based amphiphilic polypeptides. The membrane elasticity is found to be adjustable by a suitable combination of helical blocks in terms of stereocomplex formation and the interdigitation of side chains among helices in the molecular assemblies.
Collapse
Affiliation(s)
- Cheol Joo Kim
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Motoki Ueda
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Junji Sugiyama
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
4
|
Delage E, Zurzolo C. Exploring the role of lipids in intercellular conduits: breakthroughs in the pipeline. FRONTIERS IN PLANT SCIENCE 2013; 4:504. [PMID: 24368909 PMCID: PMC3857720 DOI: 10.3389/fpls.2013.00504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/25/2013] [Indexed: 05/08/2023]
Abstract
It has been known for more than a century that most of the plant cells are connected to their neighbors through membranous pores perforating the cell wall, namely plasmodesmata (PDs). The recent discovery of tunneling nanotubes (TNTs), thin membrane bridges established between distant mammalian cells, suggests that intercellular communication mediated through cytoplasmic continuity could be a conserved feature of eukaryotic organisms. Although TNTs differ from PDs in their formation and architecture, both are characterized by a continuity of the plasma membrane between two cells, delimiting a nanotubular channel supported by actin-based cytoskeleton. Due to this unusual membrane organization, lipids are likely to play critical roles in the formation and stability of intercellular conduits like TNTs and PDs, but also in regulating the transfer through these structures. While it is crucial for a better understanding of those fascinating communication highways, the study of TNT lipid composition and dynamics turned out to be extremely challenging. The present review aims to give an overview of the recent findings in this context. We will also discuss some of the promising imaging approaches, which might be the key for future breakthroughs in the field and could also benefit the research on PDs.
Collapse
Affiliation(s)
- Elise Delage
- *Correspondence: Elise Delage and Chiara Zurzolo, Unité de Trafic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France e-mail: ;
| | - Chiara Zurzolo
- *Correspondence: Elise Delage and Chiara Zurzolo, Unité de Trafic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France e-mail: ;
| |
Collapse
|
5
|
Structures of lysenin reveal a shared evolutionary origin for pore-forming proteins and its mode of sphingomyelin recognition. Structure 2012; 20:1498-507. [PMID: 22819216 PMCID: PMC3526787 DOI: 10.1016/j.str.2012.06.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 06/06/2012] [Accepted: 06/11/2012] [Indexed: 11/23/2022]
Abstract
Pore-forming proteins insert from solution into membranes to create lesions, undergoing a structural rearrangement often accompanied by oligomerization. Lysenin, a pore-forming toxin from the earthworm Eisenia fetida, specifically interacts with sphingomyelin (SM) and may confer innate immunity against parasites by attacking their membranes to form pores. SM has important roles in cell membranes and lysenin is a popular SM-labeling reagent. The structure of lysenin suggests common ancestry with other pore-forming proteins from a diverse set of eukaryotes and prokaryotes. The complex with SM shows the mode of its recognition by a protein in which both the phosphocholine headgroup and one acyl tail are specifically bound. Lipid interaction studies and assays using viable target cells confirm the functional reliance of lysenin on this form of SM recognition.
Collapse
|