1
|
Tuyaerts S, Rombauts K, Everaert T, Van Nuffel AMT, Amant F. A Phase 2 Study to Assess the Immunomodulatory Capacity of a Lecithin-based Delivery System of Curcumin in Endometrial Cancer. Front Nutr 2019; 5:138. [PMID: 30687714 PMCID: PMC6336921 DOI: 10.3389/fnut.2018.00138] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/17/2018] [Indexed: 01/31/2023] Open
Abstract
Curcumin is a botanical with anti-tumor and immunomodulatory properties. We hypothesized that curcumin supplementation might influence inflammatory biomarker levels in endometrial carcinoma (EC). In this open-label, non-randomized phase 2 study (NCT02017353), seven EC patients consumed 2 g/day Curcumin Phytosome (CP) orally for 2 weeks. Blood was taken at baseline, days 1, 7, 14, and 21. The following analytes were measured: curcuminoids and metabolites, 56 inflammatory biomarkers, COX-2, frequencies of myeloid-derived suppressor cells, dendritic cells and NK cells, expression of MHC molecules on leukocytes and monocytes and activation/memory status of T cells. Patients completed quality of life (QoL) questionnaires at baseline and end of treatment. Curcumin metabolites were detectable in plasma upon CP intake. CP downregulated MHC expression levels on leukocytes (P = 0.0313), the frequency of monocytes (P = 0.0114) and ICOS expression by CD8+ T cells (P = 0.0002). However, CP upregulated CD69 levels on CD16− NK cells (P = 0.0313). No differences were observed regarding inflammatory biomarkers, frequencies of other immune cell types, T cell activation and COX-2 expression. A non-significant trend to improved QoL was observed. Overall, CP-induced immunomodulatory effects in EC were modest without significant QoL changes. Given the small population and the observed variability in inter-patient biomarker levels, more research is necessary to explore whether benefits of CP can be obtained in EC by different supplementation regimens. Clinical Trial Registration:www.ClinicalTrials.gov, identifier NCT02017353; www.clinicaltrialsregister.eu, identifier 2013-001737-40.
Collapse
Affiliation(s)
- Sandra Tuyaerts
- Laboratory of Gynaecologic Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.,Leuven Cancer Institute, Leuven, Belgium
| | | | - Tina Everaert
- Laboratory of Gynaecologic Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Frédéric Amant
- Laboratory of Gynaecologic Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.,Leuven Cancer Institute, Leuven, Belgium.,Center for Gynecologic Oncology Amsterdam, Amsterdam University Medical Center, Antoni van Leeuwenhoek Hospital, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
2
|
LaDisa JF, Bozdag S, Olson J, Ramchandran R, Kersten JR, Eddinger TJ. Gene Expression in Experimental Aortic Coarctation and Repair: Candidate Genes for Therapeutic Intervention? PLoS One 2015. [PMID: 26207811 PMCID: PMC4514739 DOI: 10.1371/journal.pone.0133356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coarctation of the aorta (CoA) is a constriction of the proximal descending thoracic aorta and is one of the most common congenital cardiovascular defects. Treatments for CoA improve life expectancy, but morbidity persists, particularly due to the development of chronic hypertension (HTN). Identifying the mechanisms of morbidity is difficult in humans due to confounding variables such as age at repair, follow-up duration, coarctation severity and concurrent anomalies. We previously developed an experimental model that replicates aortic pathology in humans with CoA without these confounding variables, and mimics correction at various times using dissolvable suture. Here we present the most comprehensive description of differentially expressed genes (DEGs) to date from the pathology of CoA, which were obtained using this model. Aortic samples (n=4/group) from the ascending aorta that experiences elevated blood pressure (BP) from induction of CoA, and restoration of normal BP after its correction, were analyzed by gene expression microarray, and enriched genes were converted to human orthologues. 51 DEGs with >6 fold-change (FC) were used to determine enriched Gene Ontology terms, altered pathways, and association with National Library of Medicine Medical Subject Headers (MeSH) IDs for HTN, cardiovascular disease (CVD) and CoA. The results generated 18 pathways, 4 of which (cell cycle, immune system, hemostasis and metabolism) were shared with MeSH ID’s for HTN and CVD, and individual genes were associated with the CoA MeSH ID. A thorough literature search further uncovered association with contractile, cytoskeletal and regulatory proteins related to excitation-contraction coupling and metabolism that may explain the structural and functional changes observed in our experimental model, and ultimately help to unravel the mechanisms responsible for persistent morbidity after treatment for CoA.
Collapse
Affiliation(s)
- John F. LaDisa
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Herma Heart Center, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Serdar Bozdag
- Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Jessica Olson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ramani Ramchandran
- Departments of Pediatrics and Obstetrics and Gynecology, Medical College of Wisconsin and the Developmental Vascular Biology Program, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Judy R. Kersten
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Thomas J. Eddinger
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
3
|
Stephenson ST, Bostik P, Song B, Rajan D, Bhimani S, Rehulka P, Mayne AE, Ansari AA. Distinct host cell proteins incorporated by SIV replicating in CD4+ T cells from natural disease resistant versus non-natural disease susceptible hosts. Retrovirology 2010; 7:107. [PMID: 21162735 PMCID: PMC3012658 DOI: 10.1186/1742-4690-7-107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/16/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Enveloped viruses including the simian immunodeficiency virus (SIV) replicating within host cells acquire host proteins upon egress from the host cells. A number of studies have catalogued such host proteins, and a few have documented the potential positive and negative biological functions of such host proteins. The studies conducted herein utilized proteomic analysis to identify differences in the spectrum of host proteins acquired by a single source of SIV replicating within CD4+ T cells from disease resistant sooty mangabeys and disease susceptible rhesus macaques. RESULTS While a total of 202 host derived proteins were present in viral preparations from CD4+ T cells from both species, there were 4 host-derived proteins that consistently and uniquely associated with SIV replicating within CD4+ T cells from rhesus macaques but not sooty mangabeys; and, similarly, 28 host-derived proteins that uniquely associated with SIV replicating within CD4+ T cells from sooty mangabeys, but not rhesus macaques. Of interest was the finding that of the 4 proteins uniquely present in SIV preparations from rhesus macaques was a 26 S protease subunit 7 (MSS1) that was shown to enhance HIV-1 'tat' mediated transactivation. Among the 28 proteins found in SIV preparations from sooty mangabeys included several molecules associated with immune function such as CD2, CD3ε, TLR4, TLR9 and TNFR and a bioactive form of IL-13. CONCLUSIONS The finding of 4 host proteins that are uniquely associated with SIV replicating within CD4+ T cells from disease susceptible rhesus macaques and 28 host proteins that are uniquely associated with SIV replicating within CD4+ T cells from disease resistant sooty mangabeys provide the foundation for determining the potential role of each of these unique host-derived proteins in contributing to the polarized clinical outcome in these 2 species of nonhuman primates.
Collapse
Affiliation(s)
- Susan T Stephenson
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|