1
|
Bofinger R, Weitsman G, Evans R, Glaser M, Sander K, Allan H, Hochhauser D, Kalber TL, Årstad E, Hailes HC, Ng T, Tabor AB. Drug delivery, biodistribution and anti-EGFR activity: theragnostic nanoparticles for simultaneous in vivo delivery of tyrosine kinase inhibitors and kinase activity biosensors. NANOSCALE 2021; 13:18520-18535. [PMID: 34730152 PMCID: PMC8601123 DOI: 10.1039/d1nr02770k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/24/2021] [Indexed: 05/03/2023]
Abstract
In vivo delivery of small molecule therapeutics to cancer cells, assessment of the selectivity of administration, and measuring the efficacity of the drug in question at the molecule level, are important ongoing challenges in developing new classes of cancer chemotherapeutics. One approach that has the potential to provide targeted delivery, tracking of biodistribution and readout of efficacy, is to use multimodal theragnostic nanoparticles to deliver the small molecule therapeutic. In this paper, we report the development of targeted theragnostic lipid/peptide/DNA lipopolyplexes. These simultaneously deliver an inhibitor of the EGFR tyrosine kinase, and plasmid DNA coding for a Crk-based biosensor, Picchu-X, which when expressed in the target cells can be used to quantify the inhibition of EGFR in vivo in a mouse colorectal cancer xenograft model. Reversible bioconjugation of a known analogue of the tyrosine kinase inhibitor Mo-IPQA to a cationic peptide, and co-formulation with peptides containing both EGFR-binding and cationic sequences, allowed for good levels of inhibitor encapsulation with targeted delivery to LIM1215 colon cancer cells. Furthermore, high levels of expression of the Picchu-X biosensor in the LIM1215 cells in vivo allowed us to demonstrate, using fluorescence lifetime microscopy (FLIM)-based biosensing, that EGFR activity can be successfully suppressed by the tyrosine kinase inhibitor, released from the lipopolyplexes. Finally, we measured the biodistribution of lipopolyplexes containing 125I-labelled inhibitors and were able to demonstrate that the lipopolyplexes gave significantly higher drug delivery to the tumors compared with free drug.
Collapse
Affiliation(s)
- Robin Bofinger
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Gregory Weitsman
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
| | - Rachel Evans
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Matthias Glaser
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Kerstin Sander
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Helen Allan
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Daniel Hochhauser
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Erik Årstad
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
- Centre for Radiopharmaceutical Chemistry, Kathleen Lonsdale Building, 5 Gower Place, London WC1E 6BS, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| | - Tony Ng
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
2
|
Fercher A, Zhdanov AV, Papkovsky DB. O2 Imaging in Biological Specimens. PHOSPHORESCENT OXYGEN-SENSITIVE PROBES 2012. [DOI: 10.1007/978-3-0348-0525-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
3
|
Carlin LM, Evans R, Milewicz H, Fernandes L, Matthews DR, Perani M, Levitt J, Keppler MD, Monypenny J, Coolen T, Barber PR, Vojnovic B, Suhling K, Fraternali F, Ameer-Beg S, Parker PJ, Thomas NSB, Ng T. A targeted siRNA screen identifies regulators of Cdc42 activity at the natural killer cell immunological synapse. Sci Signal 2011; 4:ra81. [PMID: 22126964 DOI: 10.1126/scisignal.2001729] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells kill tumor cells and virally infected cells, and an effective NK cell response requires processes, such as motility, recognition, and directional secretion, that rely on cytoskeletal rearrangement. The Rho guanosine triphosphatase (GTPase) Cdc42 coordinates cytoskeletal reorganization downstream of many receptors. The Rho-related GTPase from plants 1 (ROP1) exhibits oscillatory activation behavior at the apical plasma membrane of growing pollen tubes; however, a similar oscillation in Rho GTPase activity has so far not been demonstrated in mammalian cells. We hypothesized that oscillations in Cdc42 activity might occur within NK cells as they interact with target cells. Through fluorescence lifetime imaging of a Cdc42 biosensor, we observed that in live NK cells forming immunological synapses with target cells, Cdc42 activity oscillated after exhibiting an initial increase. We used protein-protein interaction networks and structural databases to identify candidate proteins that controlled Cdc42 activity, leading to the design of a targeted short interfering RNA screen. The guanine nucleotide exchange factors RhoGEF6 and RhoGEF7 were necessary for Cdc42 activation within the NK cell immunological synapse. In addition, the kinase Akt and the p85α subunit of phosphoinositide 3-kinase (PI3K) were required for Cdc42 activation, the periodicity of the oscillation in Cdc42 activity, and the subsequent polarization of cytotoxic vesicles toward target cells. Given that PI3Ks are targets of tumor therapies, our findings suggest the need to monitor innate immune function during the course of targeted therapy against these enzymes.
Collapse
Affiliation(s)
- Leo M Carlin
- Richard Dimbleby Department of Cancer Research, King's College London, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Patel GS, Kiuchi T, Lawler K, Ofo E, Fruhwirth GO, Kelleher M, Shamil E, Zhang R, Selvin PR, Santis G, Spicer J, Woodman N, Gillett CE, Barber PR, Vojnovic B, Kéri G, Schaeffter T, Goh V, O'Doherty MJ, Ellis PA, Ng T. The challenges of integrating molecular imaging into the optimization of cancer therapy. Integr Biol (Camb) 2011; 3:603-31. [PMID: 21541433 DOI: 10.1039/c0ib00131g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We review novel, in vivo and tissue-based imaging technologies that monitor and optimize cancer therapeutics. Recent advances in cancer treatment centre around the development of targeted therapies and personalisation of treatment regimes to individual tumour characteristics. However, clinical outcomes have not improved as expected. Further development of the use of molecular imaging to predict or assess treatment response must address spatial heterogeneity of cancer within the body. A combination of different imaging modalities should be used to relate the effect of the drug to dosing regimen or effective drug concentration at the local site of action. Molecular imaging provides a functional and dynamic read-out of cancer therapeutics, from nanometre to whole body scale. At the whole body scale, an increase in the sensitivity and specificity of the imaging probe is required to localise (micro)metastatic foci and/or residual disease that are currently below the limit of detection. The use of image-guided endoscopic biopsy can produce tumour cells or tissues for nanoscopic analysis in a relatively patient-compliant manner, thereby linking clinical imaging to a more precise assessment of molecular mechanisms. This multimodality imaging approach (in combination with genetics/genomic information) could be used to bridge the gap between our knowledge of mechanisms underlying the processes of metastasis, tumour dormancy and routine clinical practice. Treatment regimes could therefore be individually tailored both at diagnosis and throughout treatment, through monitoring of drug pharmacodynamics providing an early read-out of response or resistance.
Collapse
Affiliation(s)
- G S Patel
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, King's College London, Guy's Medical School Campus, London, SE1 1UL, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Fruhwirth GO, Fernandes LP, Weitsman G, Patel G, Kelleher M, Lawler K, Brock A, Poland SP, Matthews DR, Kéri G, Barber PR, Vojnovic B, Ameer‐Beg SM, Coolen ACC, Fraternali F, Ng T. How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology. Chemphyschem 2011; 12:442-61. [DOI: 10.1002/cphc.201000866] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/07/2011] [Indexed: 01/22/2023]
Affiliation(s)
- Gilbert O. Fruhwirth
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
- Comprehensive Cancer Imaging Centre, New Hunt's House, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Luis P. Fernandes
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Gregory Weitsman
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - Gargi Patel
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - Muireann Kelleher
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - Katherine Lawler
- Comprehensive Cancer Imaging Centre, New Hunt's House, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Adrian Brock
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - Simon P. Poland
- Comprehensive Cancer Imaging Centre, New Hunt's House, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Daniel R. Matthews
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - György Kéri
- Vichem Chemie Research Ltd. Herman Ottó utca 15, Budapest, Hungary and Pathobiochemistry Research Group of Hungarian Academy of Science, Semmelweis University, Budapest, 1444 Bp 8. POB 260 (Hungary)
| | - Paul R. Barber
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ (UK)
| | - Borivoj Vojnovic
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ (UK)
| | - Simon M. Ameer‐Beg
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Anthony C. C. Coolen
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
- Department of Mathematics, King's College London, Strand Campus, London, WC2R 2LS (UK)
| | - Franca Fraternali
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
- Comprehensive Cancer Imaging Centre, New Hunt's House, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| |
Collapse
|
6
|
Timpson P, McGhee EJ, Morton JP, von Kriegsheim A, Schwarz JP, Karim SA, Doyle B, Quinn JA, Carragher NO, Edward M, Olson MF, Frame MC, Brunton VG, Sansom OJ, Anderson KI. Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53. Cancer Res 2011; 71:747-57. [PMID: 21266354 PMCID: PMC3033324 DOI: 10.1158/0008-5472.can-10-2267] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability to observe changes in molecular behavior during cancer cell invasion in vivo remains a major challenge to our understanding of the metastatic process. Here, we demonstrate for the first time, an analysis of RhoA activity at a subcellular level using FLIM-FRET (fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer) imaging in a live animal model of pancreatic cancer. In invasive mouse pancreatic ductal adenocarcinoma (PDAC) cells driven by mutant p53 (p53(R172H)), we observed a discrete fraction of high RhoA activity at both the leading edge and rear of cells in vivo which was absent in two-dimensional in vitro cultures. Notably, this pool of active RhoA was absent in noninvasive p53(fl) knockout PDAC cells, correlating with their poor invasive potential in vivo. We used dasatanib, a clinically approved anti-invasive agent that is active in this model, to illustrate the functional importance of spatially regulated RhoA. Dasatanib inhibited the activity of RhoA at the poles of p53(R172H) cells in vivo and this effect was independent of basal RhoA activity within the cell body. Taken together, quantitative in vivo fluorescence lifetime imaging illustrated that RhoA is not only necessary for invasion, but also that subcellular spatial regulation of RhoA activity, as opposed to its global activity, is likely to govern invasion efficiency in vivo. Our findings reveal the utility of FLIM-FRET in analyzing dynamic biomarkers during drug treatment in living animals, and they also show how discrete intracellular molecular pools might be differentially manipulated by future anti-invasive therapies.
Collapse
Affiliation(s)
- Paul Timpson
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kelleher MT, Fruhwirth G, Patel G, Ofo E, Festy F, Barber PR, Ameer-Beg SM, Vojnovic B, Gillett C, Coolen A, Kéri G, Ellis PA, Ng T. The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients. Target Oncol 2009; 4:235-52. [PMID: 19756916 PMCID: PMC2778706 DOI: 10.1007/s11523-009-0116-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 08/28/2009] [Indexed: 12/21/2022]
Abstract
Genomics and proteomics will improve outcome prediction in cancer and have great potential to help in the discovery of unknown mechanisms of metastasis, ripe for therapeutic exploitation. Current methods of prognosis estimation rely on clinical data, anatomical staging and histopathological features. It is hoped that translational genomic and proteomic research will discriminate more accurately than is possible at present between patients with a good prognosis and those who carry a high risk of recurrence. Rational treatments, targeted to the specific molecular pathways of an individual's high-risk tumor, are at the core of tailored therapy. The aim of targeted oncology is to select the right patient for the right drug at precisely the right point in their cancer journey. Optical proteomics uses advanced optical imaging technologies to quantify the activity states of and associations between signaling proteins by measuring energy transfer between fluorophores attached to specific proteins. Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) assays are suitable for use in cell line models of cancer, fresh human tissues and formalin-fixed paraffin-embedded tissue (FFPE). In animal models, dynamic deep tissue FLIM/FRET imaging of cancer cells in vivo is now also feasible. Analysis of protein expression and post-translational modifications such as phosphorylation and ubiquitination can be performed in cell lines and are remarkably efficiently in cancer tissue samples using tissue microarrays (TMAs). FRET assays can be performed to quantify protein-protein interactions within FFPE tissue, far beyond the spatial resolution conventionally associated with light or confocal laser microscopy. Multivariate optical parameters can be correlated with disease relapse for individual patients. FRET-FLIM assays allow rapid screening of target modifiers using high content drug screens. Specific protein-protein interactions conferring a poor prognosis identified by high content tissue screening will be perturbed with targeted therapeutics. Future targeted drugs will be identified using high content/throughput drug screens that are based on multivariate proteomic assays. Response to therapy at a molecular level can be monitored using these assays while the patient receives treatment: utilizing re-biopsy tumor tissue samples in the neoadjuvant setting or by examining surrogate tissues. These technologies will prove to be both prognostic of risk for individuals when applied to tumor tissue at first diagnosis and predictive of response to specifically selected targeted anticancer drugs. Advanced optical assays have great potential to be translated into real-life benefit for cancer patients.
Collapse
Affiliation(s)
- Muireann T. Kelleher
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, Kings College London, 2nd Floor, New Hunt House, Guy’s Medical School Campus, London, SE1 1UL UK
- Department Medical Oncology, Guy’s Hospital, London, SE1 9RT UK
| | - Gilbert Fruhwirth
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, Kings College London, 2nd Floor, New Hunt House, Guy’s Medical School Campus, London, SE1 1UL UK
| | - Gargi Patel
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, Kings College London, 2nd Floor, New Hunt House, Guy’s Medical School Campus, London, SE1 1UL UK
| | - Enyinnaya Ofo
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, Kings College London, 2nd Floor, New Hunt House, Guy’s Medical School Campus, London, SE1 1UL UK
| | - Frederic Festy
- Biomaterial, Biomimetics & Biophotonics Research Group, King’s College London, London, UK
| | - Paul R. Barber
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Simon M. Ameer-Beg
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, Kings College London, 2nd Floor, New Hunt House, Guy’s Medical School Campus, London, SE1 1UL UK
| | - Borivoj Vojnovic
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, Kings College London, 2nd Floor, New Hunt House, Guy’s Medical School Campus, London, SE1 1UL UK
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Cheryl Gillett
- Guy’s & St Thomas’ Breast Tissue & Data Bank, King’s College London, Guy’s Hospital, London, SE1 9RT UK
| | - Anthony Coolen
- Department of Mathematics, King’s College London, Strand Campus, London, WC2R 2LS UK
| | - György Kéri
- Vichem Chemie Research Ltd., Herman Ottó utca 15, Budapest, Hungary
- Pathobiochemistry Research Group of Hungarian Academy of Science, Semmelweis University, Budapest, 1444 Bp 8. POB 260, Hungary
| | - Paul A. Ellis
- Department Medical Oncology, Guy’s Hospital, London, SE1 9RT UK
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, Kings College London, 2nd Floor, New Hunt House, Guy’s Medical School Campus, London, SE1 1UL UK
| |
Collapse
|