1
|
Tinti M, Panni S, Cesareni G. Profiling Phosphopeptide-Binding Domain Recognition Specificity Using Peptide Microarrays. Methods Mol Biol 2017; 1518:177-193. [PMID: 27873207 DOI: 10.1007/978-1-4939-6584-7_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular organization and response to internal and external stimuli are mediated by an intricate web of protein interactions. Some of these interactions are regulated by covalent posttranslational modifications such as phosphorylation and acetylation. These modifications can change the chemical nature of the interaction interfaces and modulate the binding affinity of the interacting partners. In signal transduction, the most frequent modification is reversible phosphorylation of tyrosine, serine or threonine residues. Protein phosphorylation may modulate the activity of enzymes by modifying their conformation, or regulate the formation of complexes by creating docking sites to recruit downstream effectors. Families of modular domains, such as SH2, PTB, and 14-3-3, act as "readers" of the modification event. Specificity between closely related domains of the same family is mediated by the chemical properties of the domain binding surface that, aside from offering a hydrophilic pocket for the phosphorylated residue, shows preference for specific sequences. Although the protein structure and the cell context are also important to ensure specificity, the amino acid sequence flanking the phosphorylation site defines the accuracy of the recognition process, and it is therefore essential to define the binding specificity of phosphopeptide binding domains in order to understand and to infer the interaction web mediated by phosphopeptides. Methods commonly used to discover new interactions (such as yeast two hybrid and phage display) are not suited to study interactions with phosphorylated proteins. On the other hand, peptide arrays are a powerful approach to precisely identify the binding preference of phosphopeptide recognition domains. Here we describe a detailed protocol to assemble arrays of hundreds to thousands phospho-peptides and to screen them with any modular domain of interest.
Collapse
Affiliation(s)
- Michele Tinti
- Division of Biochemical Chemistry and Drug Discovery, College of Life Science, Dundee University, Dow Street, Dundee, DD1 4HN, UK.
| | - Simona Panni
- Department of Biology, Ecology and Earth Science, DiBEST, University of Calabria, Rende, Italy.
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Istituto Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
2
|
De-Simone SG, Napoleão-Pêgo P, De-Simone TS. Spot Synthesis: An Optimized Microarray to Detect IgE Epitopes. Methods Mol Biol 2016; 1352:263-77. [PMID: 26490482 DOI: 10.1007/978-1-4939-3037-1_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peptide microarrays have become increasingly more affordable in recent years with the SPOT technique being one of the most frequently used methods for synthesis and screening of peptides in arrays. Here, a protocol is presented for the identification of the amino acid sites involved in the conversion of human IgG to IgE response during the passive administration of therapeutic, anti-snake venom sera. Similarly, the minimal region of both the IgG and IgE binding epitopes, important for its interaction with ligand, were identified. As the ratio of concentrations for IgG to IgE in human serum is 1:10,000, also presented is a reproductive protocol of chemiluminescence-scanning for the detection of both immunoglobulins.
Collapse
Affiliation(s)
- Salvatore G De-Simone
- FIOCRUZ, Center of Technological Development in Health (CDTS) / National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro, Brazil.
| | - Paloma Napoleão-Pêgo
- Department of Cellular andMolecularBiology, Federal FluminenseUniversity,Biology Institute, Niterói, Rio de Janeiro, Brazil
| | - Thatiane S De-Simone
- IOCRUZ, Center of Technological Development in Health (CDTS) / National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN) FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Structure-activity relationship study using peptide arrays to optimize Api137 for an increased antimicrobial activity against Pseudomonas aeruginosa. Eur J Med Chem 2015; 103:574-82. [PMID: 26408816 DOI: 10.1016/j.ejmech.2015.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 12/22/2022]
Abstract
The opportunistic Gram-negative bacterium Pseudomonas aeruginosa has a low susceptibility to common antibiotics. Additionally, around 15% of all clinical isolates bear acquired resistance genes. Thus, the development of new antibiotics to combat this pathogen in pneumonia, urinary tract infections, and bacteremia, represents an urgent task. The activity spectrum of the proline-rich antimicrobial peptide apidaecin 1b, originally isolated from honeybees (Apis mellifera), was extended in previous studies to further human pathogens including P. aeruginosa. However, the in vitro activity of the optimized peptide Api137 is limited to diluted medium conditions. Thus, we synthesized 323 analogs of Api137 on cellulose membranes using the SPOT strategy by substituting each residue individually by 19 other amino acids or deleting the residue. The peptides were deprotected with trifluoroacetic acid and cleaved with aqueous trimethylamine as C-terminal acids providing around 30 μg crude peptide per spot. This amount allowed determining the minimal inhibitory concentrations in a microdilution broth assay. The most promising substitutions were selected to synthesize 44 doubly and triply substituted Api137 analogs on the membrane. The 19 best peptides were synthesized at a larger scale and purified. Eight triply substituted Api137 analogs were up to 16-fold more active against P. aeruginosa at high medium concentrations without losing activities against Klebsiella pneumoniae and Acinetobacter baumannii and only slightly against Escherichia coli. The eight most active Api137 analogs were non-hemolytic to human erythrocytes and non-toxic to HeLa cells.
Collapse
|
4
|
Tremblay V, Zhang P, Chaturvedi CP, Thornton J, Brunzelle JS, Skiniotis G, Shilatifard A, Brand M, Couture JF. Molecular basis for DPY-30 association to COMPASS-like and NURF complexes. Structure 2014; 22:1821-1830. [PMID: 25456412 DOI: 10.1016/j.str.2014.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/15/2014] [Accepted: 10/06/2014] [Indexed: 01/31/2023]
Abstract
DPY-30 is a subunit of mammalian COMPASS-like complexes (complex of proteins associated with Set1) and regulates global histone H3 Lys-4 trimethylation. Here we report structural evidence showing that the incorporation of DPY-30 into COMPASS-like complexes is mediated by several hydrophobic interactions between an amphipathic α helix located on the C terminus of COMPASS subunit ASH2L and the inner surface of the DPY-30 dimerization/docking (D/D) module. Mutations impairing the interaction between ASH2L and DPY-30 result in a loss of histone H3K4me3 at the β locus control region and cause a delay in erythroid cell terminal differentiation. Using overlay assays, we defined a consensus sequence for DPY-30 binding proteins and found that DPY-30 interacts with BAP18, a subunit of the nucleosome remodeling factor complex. Overall, our results indicate that the ASH2L/DPY-30 complex is important for cell differentiation and provide insights into the ability of DPY-30 to associate with functionally divergent multisubunit complexes.
Collapse
Affiliation(s)
- Véronique Tremblay
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Pamela Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Chandra-Prakash Chaturvedi
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Janet Thornton
- Department of Biochemistry and Molecular Genetics, Northwestern University, Searle Building, 320 East Superior Street, Chicago, IL 60611, USA
| | - Joseph S Brunzelle
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Georgios Skiniotis
- Life Sciences Institute and Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Searle Building, 320 East Superior Street, Chicago, IL 60611, USA
| | - Marjorie Brand
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
5
|
Minie M, Chopra G, Sethi G, Horst J, White G, Roy A, Hatti K, Samudrala R. CANDO and the infinite drug discovery frontier. Drug Discov Today 2014; 19:1353-63. [PMID: 24980786 DOI: 10.1016/j.drudis.2014.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/21/2022]
Abstract
The Computational Analysis of Novel Drug Opportunities (CANDO) platform (http://protinfo.org/cando) uses similarity of compound-proteome interaction signatures to infer homology of compound/drug behavior. We constructed interaction signatures for 3733 human ingestible compounds covering 48,278 protein structures mapping to 2030 indications based on basic science methodologies to predict and analyze protein structure, function, and interactions developed by us and others. Our signature comparison and ranking approach yielded benchmarking accuracies of 12-25% for 1439 indications with at least two approved compounds. We prospectively validated 49/82 'high value' predictions from nine studies covering seven indications, with comparable or better activity to existing drugs, which serve as novel repurposed therapeutics. Our approach may be generalized to compounds beyond those approved by the FDA, and can also consider mutations in protein structures to enable personalization. Our platform provides a holistic multiscale modeling framework of complex atomic, molecular, and physiological systems with broader applications in medicine and engineering.
Collapse
Affiliation(s)
- Mark Minie
- University of Washington, Department of Bioengineering, Seattle, WA 98109, United States
| | - Gaurav Chopra
- University of Washington, Department of Microbiology, Seattle, WA 98109, United States; University of California, San Francisco, Diabetes Center, San Francisco, CA 94143, United States
| | - Geetika Sethi
- University of Washington, Department of Microbiology, Seattle, WA 98109, United States
| | - Jeremy Horst
- University of California, School of Medicine, San Francisco, CA 94143, United States
| | - George White
- University of Washington, Department of Microbiology, Seattle, WA 98109, United States
| | - Ambrish Roy
- Georgia Institute of Technology, Center for the Study of Systems Biology, Atlanta, GA 30318, United States
| | - Kaushik Hatti
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, 560012, India
| | - Ram Samudrala
- University of Washington, Department of Microbiology, Seattle, WA 98109, United States.
| |
Collapse
|
6
|
Frei R, Breitbach AS, Blackwell HE. Expedient construction of small molecule macroarrays via sequential palladium- and copper-mediated reactions and their ex situ biological testing. Chem Sci 2012. [PMID: 23198087 DOI: 10.1039/c2sc01089e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report the highly efficient syntheses of a series of focused libraries in the small molecule macroarray format using Suzuki-Miyaura and copper-catalyzed azide-alkyne cycloaddition (or "click") reactions. The libraries were based on stilbene and triazole scaffolds, which are known to have a broad range of biological activities, including quorum-sensing (QS) modulation in bacteria. The library products were generated in parallel on the macroarray in extremely short reaction times (~10-20 min) and isolated in excellent purities. Biological testing of one macroarray library post-cleavage (ex situ) revealed several potent agonists of the QS receptor, LuxR, in Vibrio fischeri. These synthetic agonists, in contrast to others that we have reported, were only active in the presence of the native QS signal in V. fischeri, which is suggestive of a different mode of activity. Notably, the results presented herein showcase the ready compatibility of the macroarray platform with chemical reactions that are commonly utilized in small molecule probe and drug discovery today. As such, this work serves to expand the utility of the small molecule macroarray as a rapid and operationally straightforward approach toward the synthesis and screening of bioactive agents.
Collapse
Affiliation(s)
- Reto Frei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1396
| | | | | |
Collapse
|
7
|
Abstract
The SPOT technique provides a fast, cost-efficient, and highly parallel method to synthesize peptide arrays on cellulose. Peptides synthesized on cellulose can be easily cleaved from the support and used directly in a screening assay for antimicrobial activity. Depending on the equipment, the synthesis and the screening can be performed in a medium- or high-throughput manner. High-sensitivity screening is achieved using a bacterial strain (e.g., Pseudomonas aeruginosa H1001) in which a luminescence-encoding gene cassette has been introduced. The intensity of light produced is directly dependent on the energy level of the bacteria. This screening supports the development of new drugs against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Kai Hilpert
- Institute of Biological Interfaces - IBG 2, KIT (Karlsruhe Institute of Technology), Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|