1
|
Abstract
MicroRNAs orchestrate the tight regulation of numerous cellular processes and the deregulation in their activities has been implicated in many diseases, including diabetes and cancer. There is an increasing amount of epidemiological evidence associating diabetes, particularly type 2 diabetes mellitus, to an elevated risk of various cancer types, including breast cancer. However, little is yet known about the underlying molecular mechanisms and even less about the role miRNAs play in driving the tumorigenic potential of the cell signaling underlying diabetes pathogenesis. This article reviews the role of miRNA in bridging the diabetes–breast cancer association by discussing specific miRNAs that are implicated in diabetes and breast cancer and highlighting the overlap between the disease-specific regulatory miRNA networks to identify a 20-miRNA signature that is common to both diseases. Potential therapeutic targeting of these molecular players may help to alleviate the socioeconomic burden on public health that is imposed by the type 2 diabetes mellitus (T2DM)–breast cancer association.
Collapse
|
2
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, Kalantari M, Tavakol S, Mohammadinejad R, Najafi M, Tay FR, Makvandi P. Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy. ACS COMBINATORIAL SCIENCE 2020; 22:669-700. [PMID: 33095554 PMCID: PMC8015217 DOI: 10.1021/acscombsci.0c00099] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Chemotherapy using natural compounds, such as resveratrol, curcumin, paclitaxel, docetaxel, etoposide, doxorubicin, and camptothecin, is of importance in cancer therapy because of the outstanding therapeutic activity and multitargeting capability of these compounds. However, poor solubility and bioavailability of natural compounds have limited their efficacy in cancer therapy. To circumvent this hurdle, nanocarriers have been designed to improve the antitumor activity of the aforementioned compounds. Nevertheless, cancer treatment is still a challenge, demanding novel strategies. It is well-known that a combination of natural products and gene therapy is advantageous over monotherapy. Delivery of multiple therapeutic agents/small interfering RNA (siRNA) as a potent gene-editing tool in cancer therapy can maximize the synergistic effects against tumor cells. In the present review, co-delivery of natural compounds/siRNA using nanovehicles are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle,
Üniversite Caddesi No. 27, Orhanlı,
Tuzla, 34956 Istanbul, Turkey
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Ali Zarrabi
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Kiavash Hushmandi
- Department
of Food Hygiene and Quality Control, Division of Epidemiology &
Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran
| | - Farid Hashemi
- Department
of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department
of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mehdi Raei
- Health Research
Center, Life Style Institute, Baqiyatallah
University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahshad Kalantari
- Department
of Genetics, Tehran Medical Sciences Branch, Azad University, Tehran 19168931813, Iran
| | - Shima Tavakol
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 1449614525, Iran
| | - Reza Mohammadinejad
- Pharmaceutics
Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Masoud Najafi
- Medical
Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Radiology
and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Franklin R. Tay
- College
of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa Italy
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|
3
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
4
|
Yi H, Li X, Lee SH, Nou IS, Lim YP, Hur Y. Natural variation in CIRCADIAN CLOCK ASSOCIATED 1 is associated with flowering time in Brassica rapa. Genome 2016; 60:402-413. [PMID: 28177832 DOI: 10.1139/gen-2016-0052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Flowering time is a very important agronomic trait and the development of molecular markers associated with this trait can facilitate crop breeding. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a core oscillator component of circadian rhythms that affect metabolic pathways in plants, has been implicated in flowering time control in species of Brassica. CCA1 gene sequences from three Brassica rapa inbred lines, showing either early flowering or late flowering phenotypes, were analyzed and a high level of sequence variation was identified, especially within the fourth intron. Using this information, three PCR primer sets were designed and tested using various inbred lines of B. rapa. The usage of InDel markers was further validated by evaluation of flowering time and high resolution melting (HRM) analysis. Both methods, PCR and HRM, validated the use of newly developed markers. Additional sequence analyses of Brassica plants with diploid (AA, BB, or CC) and allotetraploid genomes further confirmed a large number of sequence polymorphisms in the CCA1 gene, including insertions/deletions in the fourth intron. Our results demonstrated that sequence variations in CCA1 can be used to develop valuable trait-related molecular markers for Brassica crop breeding.
Collapse
Affiliation(s)
- Hankuil Yi
- a Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Xiaonan Li
- b Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea.,d Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Seong Ho Lee
- b Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea
| | - Ill-Sup Nou
- c Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | - Yong Pyo Lim
- b Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea
| | - Yoonkang Hur
- a Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
5
|
Liu P, Li X, Gu J, Dong Y, Liu Y, Santhosh P, Chen X. Development of non-defective recombinant densovirus vectors for microRNA delivery in the invasive vector mosquito, Aedes albopictus. Sci Rep 2016; 6:20979. [PMID: 26879823 PMCID: PMC4754678 DOI: 10.1038/srep20979] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
We previously reported that mosquito densoviruses (MDVs) are potential vectors for delivering foreign nucleic acids into mosquito cells. However, considering existing expression strategies, recombinant viruses would inevitably become replication-defective viruses and lose their ability for secondary transmission. The packaging limitations of the virion represent a barrier for the development of MDVs for viral paratransgenesis or as high-efficiency bioinsecticides. Herein, we report the development of a non-defective recombinant Aedes aegypti densovirus (AaeDV) miRNA expression system, mediated by an artificial intron, using an intronic miRNA expression strategy. We demonstrated that this recombinant vector could be used to overexpress endogenous miRNAs or to decrease endogenous miRNAs by generating antisense sponges to explore the biological functions of miRNAs. In addition, the vector could express antisense-miRNAs to induce efficient gene silencing in vivo and in vitro. The recombinant virus effectively self-replicated and retained its secondary transmission ability, similar to the wild-type virus. The recombinant virus was also genetically stable. This study demonstrated the first construction of a non-defective recombinant MDV miRNA expression system, which represents a tool for the functional analysis of mosquito genes and lays the foundation for the application of viral paratransgenesis for dengue virus control.
Collapse
Affiliation(s)
- Peiwen Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaocong Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yunqiao Dong
- Reproductive Medical Center of Guangdong Women and Children Hospital, Guangzhou, Guangdong, 511442, China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Puthiyakunnon Santhosh
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoguang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
6
|
Repetitive magnetic stimulation promotes neural stem cells proliferation by upregulating MiR-106b in vitro. ACTA ACUST UNITED AC 2015; 35:766-772. [PMID: 26489637 DOI: 10.1007/s11596-015-1505-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/10/2015] [Indexed: 10/22/2022]
Abstract
Neural stem cells (NSCs) proliferation can be influenced by repetitive transcranial magnetic stimulation (rTMS) in vivo via microRNA-106b-25 cluster, but the underlying mechanisms are poorly understood. This study investigated the involvement of microRNA-106b-25 cluster in the proliferation of NSCs after repetitive magnetic stimulation (rMS) in vitro. NSCs were stimulated by rMS (200/400/600/800/1000 pulses per day, with 10 Hz frequency and 50% maximum machine output) over a 3-day period. NSCs proliferation was detected by using ki-67 and EdU staining. Ki-67, p21, p57, cyclinD1, cyclinE, cyclinA, cdk2, cdk4 proteins and miR-106b, miR-93, miR-25 mRNAs were detected by Western blotting and qRT-PCR, respectively. The results showed that rMS could promote NSCs proliferation in a dose-dependent manner. The proportions of ki-67+ and Edu+ cells in 1000 pulses group were 20.65% and 4.00%, respectively, significantly higher than those in control group (9.25%, 2.05%). The expression levels of miR-106b and miR-93 were significantly upregulated in 600-1000 pulses groups compared with control group (P<0.05 or 0.01 for all). The expression levels of p21 protein were decreased significantly in 800/1000 pulses groups, and those of cyclinD1, cyclinA, cyclinE, cdk2 and cdk4 were obviously increased after rMS as compared with control group (P<0.05 or 0.01 for all). In conclusion, our findings suggested that rMS enhances the NSCs proliferation in vitro in a dose-dependent manner and miR-106b/p21/cdks/cyclins pathway was involved in the process.
Collapse
|
7
|
Manipulating miRNA Expression: A Novel Approach for Colon Cancer Prevention and Chemotherapy. ACTA ACUST UNITED AC 2015; 1:141-153. [PMID: 26029495 DOI: 10.1007/s40495-015-0020-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small non-coding RNA has been implicated in the control of various cellular processes such as proliferation, apoptosis, and differentiation. About 50% of the miRNA genes are positioned in cancer-associated genomic regions. Several studies have shown that miRNA expression is deregulated in cancer and modulating their expression has reversed the cancer phenotype. Therefore, mechanisms to modulate microRNA (miRNA) activity have provided a novel opportunity for cancer prevention and therapy. In addition, a common cause for development of colorectal cancers is environmental and lifestyle factors. One such factor, diet has been shown to modulate miRNA expression in colorectal cancer patients. In this chapter, we will summarize the work demonstrating that miRNAs are novel promising drug targets for cancer chemoprevention and therapy. Improved delivery, increased stability and enhanced regulation of off-target effects will overcome the current challenges of this exciting approach in the field of cancer prevention and therapy.
Collapse
|
8
|
Ghorai A, Ghosh U. miRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or post-transcriptional processing of coding genes. Front Genet 2014; 5:100. [PMID: 24808907 PMCID: PMC4010735 DOI: 10.3389/fgene.2014.00100] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/07/2014] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs target specific mRNA(s) to silence its expression and thereby regulate various cellular processes. We have investigated miRNA gene counts in chromosomes for 20 different species and observed wide variation. Certain chromosomes have extremely high number of miRNA gene compared with others in all the species. For example, high number of miRNA gene in X chromosome and the least or absence of miRNA gene in Y chromosome was observed in all species. To search the criteria governing such variation of miRNA gene counts in chromosomes, we have selected three parameters- length, number of non-coding and coding genes in a chromosome. We have calculated Pearson's correlation coefficient of miRNA gene counts with length, number of non-coding and coding genes in a chromosome for all 20 species. Major number of species showed that number of miRNA gene was not correlated with chromosome length. Eighty five percent of species under study showed strong positive correlation coefficient (r ≥ 0.5) between the numbers of miRNA gene vs. non-coding gene in chromosomes as expected because miRNA is a sub-set of non-coding genes. 55% species under study showed strong positive correlation coefficient (r ≥ 0.5) between numbers of miRNA gene vs. coding gene. We hypothesize biogenesis of miRNA largely depends on coding genes, an evolutionary conserved process. Chromosomes having higher number of miRNA genes will be most likely playing regulatory roles in several cellular processes including different disorders. In humans, cancer and cardiovascular disease associated miRNAs are mostly intergenic and located in Chromosome 19, X, 14, and 1.
Collapse
Affiliation(s)
- Atanu Ghorai
- Department of Biochemistry and Biophysics, University of Kalyani Kalyani, India
| | - Utpal Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani Kalyani, India
| |
Collapse
|
9
|
Proudnikov D, Randesi M, Levran O, Crystal H, Dorn M, Ott J, Ho A, Kreek MJ. Association of polymorphisms of the mu opioid receptor gene with the severity of HIV infection and response to HIV treatment. J Infect Dis 2012; 205:1745-56. [PMID: 22457278 DOI: 10.1093/infdis/jis264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Mu opioid receptor (OPRM1) ligands may alter expression of chemokines and chemokine receptors involved in penetration of human immunodeficiency virus (HIV) type 1 into the cell. We suggest that OPRM1 variants may affect the pathophysiology of HIV infection. METHODS DNA samples from 1031 eligible African Americans, Hispanics, and whites from the Women's Interagency HIV Study (WIHS) who were alive as of April 2006 were analyzed. We performed regression analysis of association of 18 OPRM1 variants with a change of viral load and CD4 cell count during 2 periods: between admission to WIHS and the start of highly active antiretroviral therapy (HAART) (interval X) and between the start of HAART and the most recent WIHS visit (interval Y), and examined the association of these variants with HIV status. RESULTS Regardless of genotype, a significant decrease in viral load during interval X was found for each ethnicity. Whites with allele G of the functional polymorphism 118A > G (reference sequence rs1799971) showed a smaller decrease in viral load; those bearing minor alleles IVS1 + 1050A, IVS1 + 14123A, and IVS2 + 31A showed a larger decrease in viral load over interval X (0.01 < P < .05). Hispanics with the same alleles showed a greater increase in CD4 cell count over interval Y (0.01 < P < .05). We found an association between OPRM1 variants and HIV status in African Americans and whites. CONCLUSIONS OPRM1 polymorphisms may alter the severity of HIV infection before and after HAART.
Collapse
Affiliation(s)
- Dmitri Proudnikov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gao D, Chen J, Chen M, Meyers BC, Jackson S. A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes. PLoS One 2012; 7:e32010. [PMID: 22359654 PMCID: PMC3281118 DOI: 10.1371/journal.pone.0032010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/18/2012] [Indexed: 12/31/2022] Open
Abstract
LTR retrotransposons are often the most abundant components of plant genomes and can impact gene and genome evolution. Most reported LTR retrotransposons are large elements (>4 kb) and are most often found in heterochromatic (gene poor) regions. We report the smallest LTR retrotransposon found to date, only 292 bp. The element is found in rice, maize, sorghum and other grass genomes, which indicates that it was present in the ancestor of grass species, at least 50-80 MYA. Estimated insertion times, comparisons between sequenced rice lines, and mRNA data indicate that this element may still be active in some genomes. Unlike other LTR retrotransposons, the small LTR retrotransposons (SMARTs) are distributed throughout the genomes and are often located within or near genes with insertion patterns similar to MITEs (miniature inverted repeat transposable elements). Our data suggests that insertions of SMARTs into or near genes can, in a few instances, alter both gene structures and gene expression. Further evidence for a role in regulating gene expression, SMART-specific small RNAs (sRNAs) were identified that may be involved in gene regulation. Thus, SMARTs may have played an important role in genome evolution and genic innovation and may provide a valuable tool for gene tagging systems in grass.
Collapse
Affiliation(s)
- Dongying Gao
- Center for Applied Genetic Technologies and Institute for Plant Breeding Genetics and Genomics, University of Georgia, Athens, Georgia, United States of America
| | - Jinfeng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Blake C. Meyers
- Department of Plant and Soil Sciences, and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Scott Jackson
- Center for Applied Genetic Technologies and Institute for Plant Breeding Genetics and Genomics, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Kim HJ, Chung JH, Kang S, Kim SK, Cho BS, Kim SD, Hahn WH. Association of CTLA4, CD28 and ICOS gene polymorphisms with clinicopathologic characteristics of childhood IgA nephropathy in Korean population. J Genet 2011; 90:151-5. [PMID: 21677403 DOI: 10.1007/s12041-011-0042-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hak-Jae Kim
- College of Medicine, Soonchunhyang University, Chunan 336-745, Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics 2011; 11:537-61. [PMID: 21532838 PMCID: PMC3048316 DOI: 10.2174/138920210793175895] [Citation(s) in RCA: 1318] [Impact Index Per Article: 94.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/23/2010] [Accepted: 09/06/2010] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer –dependent and –independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation.
Collapse
Affiliation(s)
- Leigh-Ann Macfarlane
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, Sir Charles Tupper Medical Building, Halifax, Nova Scotia, B3H 1X5, Canada
| | | |
Collapse
|
13
|
Jouannet V, Crespi M. Long Nonprotein-Coding RNAs in Plants. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:179-200. [PMID: 21287139 DOI: 10.1007/978-3-642-16502-3_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, nonprotein-coding RNAs (or npcRNAs) have emerged as a major part of the eukaryotic transcriptome. Many new regulatory npcRNAs or riboregulators riboregulators have been discovered and characterized due to the advent of new genomic approaches. This growing number suggests that npcRNAs could play a more important role than previously believed and significantly contribute to the generation of evolutionary complexity in multicellular organisms. Regulatory npcRNAs range from small RNAs (si/miRNAs) to very large transcripts (or long npcRNAs) and play diverse functions in development and/or environmental stress responses. Small RNAs include an expanding number of 20-40 nt RNAs that function in the regulation of gene expression by affecting mRNA decay and translational inhibition or lead to DNA methylation and gene silencing. They generally involve double-stranded RNA or stem loops and imply transcriptional or posttranscriptional gene silencing (PTGS). RNA silencing besides small interfering RNA and microRNA, gene silencing in plants is also mediated by tasiRNAs (trans-acting siRNAs) and nat-siRNAs (natural antisense mediated siRNAs). In contrast to small RNAs, much less is known about the large and diverse population of long npcRNAs, and only a few have been implicated in diverse functions such as abiotic stress responses, nodulation and flower development, and sex chromosome-specific expression. Moreover, many long npcRNAs act as antisense transcripts or are substrates of the small RNA pathways, thus interfering with a variety of RNA-related metabolisms. An emerging hypothesis is that long npcRNAs, as shown for small si/miRNAs, integrate into ribonucleoprotein particles (RNPs) to modulate their function, localization, or stability to act on target mRNAs. As plants show a remarkable developmental plasticity to adapt their growth to changing environmental conditions, understanding how npcRNAs work may reveal novel mechanisms involved in growth control and differentiation and help to design new tools for biotechnological applications.
Collapse
Affiliation(s)
- Virginie Jouannet
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, 91198, Gif-sur-Yvette Cedex, France
| | | |
Collapse
|