1
|
Ye F, Pan X, Zhang Z, Xiang X, Li X, Zhang B, Ning P, Liu A, Wang Q, Gong K, Li J, Zhu L, Qian C, Chen G, Du Y. Structural basis for ligand recognition of the human hydroxycarboxylic acid receptor HCAR3. Cell Rep 2024; 43:114895. [PMID: 39427321 DOI: 10.1016/j.celrep.2024.114895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Hydroxycarboxylic acid receptor 3 (HCAR3), a class A G-protein-coupled receptor, is an important cellular energy metabolism sensor with a key role in the regulation of lipolysis in humans. HCAR3 is deeply involved in many physiological processes and serves as a valuable target for the treatment of metabolic diseases, tumors, and immune diseases. Here, we report four cryoelectron microscopy (cryo-EM) structures of human HCAR3-Gi1 complexes with or without agonists: the endogenous ligand 3-hydroxyoctanoic acid, the drug niacin, the highly subtype-specific agonist compound 5c (4-(n-propyl)amino-3-nitrobenzoic acid), and the apo form. Together with mutagenesis and functional analyses, we revealed the recognition mechanisms of HCAR3 for different agonists. In addition, the key residues that determine the ligand selectivity between HCAR2 and HCAR3 were also illuminated. Overall, these findings provide a structural basis for the ligand recognition, activation, and selectivity and G-protein coupling mechanisms of HCAR3, which contribute to the design of HCAR3-targeting drugs with high efficacy and selectivity.
Collapse
Affiliation(s)
- Fang Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China; Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Xin Pan
- Department of Cardiology, Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Zhiyi Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinyu Li
- Warshel Institute for Computational Biology, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Binghao Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Peiruo Ning
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Qinggong Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Kaizheng Gong
- Department of Cardiology, Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Jiancheng Li
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China.
| | - Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China.
| |
Collapse
|
2
|
Lv F, Li X, Wang Y. Lycorine inhibits angiogenesis by docking to PDGFRα. BMC Cancer 2022; 22:873. [PMID: 35948939 PMCID: PMC9364594 DOI: 10.1186/s12885-022-09929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Lycorine (Lyc) is a natural alkaloid derived from medicinal plants of the Amaryllidaceae family. Lyc has been reported to inhibit the recurrence and metastasis of different kinds of tumors. However, Lyc’s effect on angiogenesis and its specific mechanism are still not clear. This study was designed to test the antiangiogenesis effect of Lyc and to explore the possible mechanisms. We performed cell experiments to confirm Lyc’s inhibitory effect on angiogenesis and employed sunitinib as a positive control. Moreover, the synergistic effect of Lyc and sunitinib was also explored. Next, we conducted bioinformatics analyses to predict the potential targets of Lyc and verified them by western blotting and immunofluorescence. Molecular docking, kinase activity assays, Biacore assays and cellular thermal shift assays (CETSAs) were applied to elucidate the mechanism by which Lyc inhibited target activity. Lyc inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs). Employing bioinformatics, we found that Lyc’s target was PDGFRα and that Lyc attenuated PDGFRα phosphorylation. We also found that Lyc inhibited PDGFRα activation by docking to it to restrain its activity. Additionally, Lyc significantly inhibited PDGF-AA-induced angiogenesis. This study provides new insights into the molecular functions of Lyc and indicates its potential as a therapeutic agent for tumor angiogenesis.
Collapse
Affiliation(s)
- Fei Lv
- Department of Oncology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110000, Liaoning Province, China
| | - XiaoQi Li
- Department of Oncology III, People's Hospital of Liaoning Provinve, Shenyang, , Liaoning, China
| | - Ying Wang
- Department of Oncology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110000, Liaoning Province, China.
| |
Collapse
|
3
|
Budroni S, Buricchi F, Cavallone A, Volpini G, Mariani A, Lo Surdo P, Blohmke CJ, Del Giudice G, Medini D, Finco O. Computational modeling of microfluidic data provides high-throughput affinity estimates for monoclonal antibodies. Comput Struct Biotechnol J 2021; 19:3664-3672. [PMID: 34257845 PMCID: PMC8255181 DOI: 10.1016/j.csbj.2021.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 10/27/2022] Open
Abstract
Affinity measurement is a fundamental step in the discovery of monoclonal antibodies (mAbs) and of antigens suitable for vaccine development. Innovative affinity assays are needed due to the low throughput and/or limited dynamic range of available technologies. We combined microfluidic technology with quantum-mechanical scattering theory, in order to develop a high-throughput, broad-range methodology to measure affinity. Fluorescence intensity profiles were generated for out-of-equilibrium solutions of labelled mAbs and their antigen-binding fragments migrating along micro-columns with immobilized cognate antigen. Affinity quantification was performed by computational data analysis based on the Landau probability distribution. Experiments using a wide array of human or murine antibodies against bacterial or viral, protein or polysaccharide antigens, showed that all the antibody-antigen capture profiles (n = 841) generated at different concentrations were accurately described by the Landau distribution. A scale parameter W, proportional to the full-width-at-half-maximum of the capture profile, was shown to be independent of the antibody concentration. The W parameter correlated significantly (Pearson's r [p-value]: 0.89 [3 × 10-8]) with the equilibrium dissociation constant KD, a gold-standard affinity measure. Our method showed good intermediate precision (median coefficient of variation: 5%) and a dynamic range corresponding to KD values spanning from ~10-7 to ~10-11 Molar. Relative to assays relying on antibody-antigen equilibrium in solution, even when they are microfluidic-based, the method's turnaround times were decreased from 2 days to 2 h. The described computational modelling of antibody capture profiles represents a fast, reproducible, high-throughput methodology to accurately measure a broad range of antibody affinities in very low volumes of solution.
Collapse
|
4
|
Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: Current status and potential. Bioorg Med Chem 2017; 26:2738-2758. [PMID: 28988749 DOI: 10.1016/j.bmc.2017.09.029] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022]
Abstract
Peptides are recognized as being highly selective, potent and relatively safe as potential therapeutics. Peptides isolated from the venom of different animals satisfy most of these criteria with the possible exception of safety, but when isolated as single compounds and used at appropriate concentrations, venom-derived peptides can become useful drugs. Although the number of venom-derived peptides that have successfully progressed to the clinic is currently limited, the prospects for venom-derived peptides look very optimistic. As proteomic and transcriptomic approaches continue to identify new sequences, the potential of venom-derived peptides to find applications as therapeutics, cosmetics and insecticides grows accordingly.
Collapse
Affiliation(s)
| | - Andrzej Czerwinski
- Peptides International, Inc., 11621 Electron Drive, Louisville, KY 40299, USA
| | - Raymond S Norton
- Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, 3052, Australia
| |
Collapse
|
5
|
Biosensor-Based Technologies for the Detection of Pathogens and Toxins. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
6
|
Tena-Campos M, Ramon E, Lupala CS, Pérez JJ, Koch KW, Garriga P. Zinc Is Involved in Depression by Modulating G Protein-Coupled Receptor Heterodimerization. Mol Neurobiol 2015; 53:2003-2015. [PMID: 25855059 DOI: 10.1007/s12035-015-9153-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/19/2015] [Indexed: 12/01/2022]
Abstract
5-Hydroxytryptamine 1A receptor and galanin receptor 1 belong to the G protein-coupled receptors superfamily, and they have been described to heterodimerize triggering an anomalous physiological state that would underlie depression. Zinc supplementation has been widely reported to improve treatment against major depressive disorder. Our work has focused on the study and characterization of these receptors and its relationships with zinc both under purified conditions and in cell culture. To this aim, we have designed a strategy to purify the receptors in a conformationally active state. We have used receptors tagged with the monoclonal Rho-1D4 antibody and employed ligand-assisted purification in order to successfully purify both receptors in a properly folded and active state. The interaction between both purified receptors has been analyzed by surface plasmon resonance in order to determine the kinetics of dimerization. Zinc effect on heteromer has also been tested using the same methodology but exposing the 5-hydroxytryptamine 1A receptor to zinc before the binding experiment. These results, combined with Förster resonance energy transfer (FRET) measurements, in the absence and presence of zinc, suggest that this ion is capable of disrupting this interaction. Moreover, molecular modeling suggests that there is a coincidence between zinc-binding sites and heterodimerization interfaces for the serotonin receptor. Our results establish a rational explanation for the role of zinc in the molecular processes associated with receptor-receptor interactions and its relationship with depression, in agreement with previously reported evidence for the positive effects of zinc in depression treatment, and the involvement of our target dimer in the same disease.
Collapse
Affiliation(s)
- Mercè Tena-Campos
- Departament d'Enginyeria Química, Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222, Terrassa, Catalonia, Spain
| | - Eva Ramon
- Departament d'Enginyeria Química, Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222, Terrassa, Catalonia, Spain
| | - Cecylia S Lupala
- Departament d'Enginyeria Química, Centre de Biotecnologia Molecular, Universitat Politècnica de Catalunya, ETSEIB, Avda. Diagonal 647, 08028, Barcelona, Catalonia, Spain
| | - Juan J Pérez
- Departament d'Enginyeria Química, Centre de Biotecnologia Molecular, Universitat Politècnica de Catalunya, ETSEIB, Avda. Diagonal 647, 08028, Barcelona, Catalonia, Spain
| | - Karl-W Koch
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Pere Garriga
- Departament d'Enginyeria Química, Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222, Terrassa, Catalonia, Spain.
| |
Collapse
|
7
|
Gopinath SC, Tang TH, Citartan M, Chen Y, Lakshmipriya T. Current aspects in immunosensors. Biosens Bioelectron 2014; 57:292-302. [DOI: 10.1016/j.bios.2014.02.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
|
8
|
Gopinath SCB, Kumar PKR. Biomolecular discrimination analyses by surface plasmon resonance. Analyst 2014; 139:2678-82. [DOI: 10.1039/c3an02052e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:43-55. [PMID: 23665295 DOI: 10.1016/j.bbamem.2013.04.028] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 11/22/2022]
Abstract
Surface plasmon resonance (SPR) spectroscopy is a rapidly developing technique for the study of ligand binding interactions with membrane proteins, which are the major molecular targets for validated drugs and for current and foreseeable drug discovery. SPR is label-free and capable of measuring real-time quantitative binding affinities and kinetics for membrane proteins interacting with ligand molecules using relatively small quantities of materials and has potential to be medium-throughput. The conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the other binding component in solution is flowed over the sensor surface; a binding interaction is detected using an optical method that measures small changes in refractive index at the sensor surface. This review first describes the basic SPR experiment and the challenges that have to be considered for performing SPR experiments that measure membrane protein-ligand binding interactions, most importantly having the membrane protein in a lipid or detergent environment that retains its native structure and activity. It then describes a wide-range of membrane protein systems for which ligand binding interactions have been characterised using SPR, including the major drug targets G protein-coupled receptors, and how challenges have been overcome for achieving this. Finally it describes some recent advances in SPR-based technology and future potential of the technique to screen ligand binding in the discovery of drugs. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
|
10
|
Chiarella S, De Cola A, Scaglione GL, Carletti E, Graziano V, Barcaroli D, Lo Sterzo C, Di Matteo A, Di Ilio C, Falini B, Arcovito A, De Laurenzi V, Federici L. Nucleophosmin mutations alter its nucleolar localization by impairing G-quadruplex binding at ribosomal DNA. Nucleic Acids Res 2013; 41:3228-39. [PMID: 23328624 PMCID: PMC3597674 DOI: 10.1093/nar/gkt001] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Nucleophosmin (NPM1) is an abundant nucleolar protein implicated in ribosome maturation and export, centrosome duplication and response to stress stimuli. NPM1 is the most frequently mutated gene in acute myeloid leukemia. Mutations at the C-terminal domain led to variant proteins that aberrantly and stably translocate to the cytoplasm. We have previously shown that NPM1 C-terminal domain binds with high affinity G-quadruplex DNA. Here, we investigate the structural determinants of NPM1 nucleolar localization. We show that NPM1 interacts with several G-quadruplex regions found in ribosomal DNA, both in vitro and in vivo. Furthermore, the most common leukemic NPM1 variant completely loses this activity. This is the consequence of G-quadruplex–binding domain destabilization, as mutations aimed at refolding the leukemic variant also result in rescuing the G-quadruplex–binding activity and nucleolar localization. Finally, we show that treatment of cells with a G-quadruplex selective ligand results in wild-type NPM1 dislocation from nucleoli into nucleoplasm. In conclusion, this work establishes a direct correlation between NPM1 G-quadruplex binding at rDNA and its nucleolar localization, which is impaired in the acute myeloid leukemia-associated protein variants.
Collapse
Affiliation(s)
- Sara Chiarella
- Department of Biochemical Sciences, 'Sapienza' University of Rome, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Citartan M, Gopinath SCB, Tominaga J, Tang TH. Label-free methods of reporting biomolecular interactions by optical biosensors. Analyst 2013; 138:3576-92. [DOI: 10.1039/c3an36828a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Skottrup PD, Leonard P, Kaczmarek JZ, Veillard F, Enghild JJ, O'Kennedy R, Sroka A, Clausen RP, Potempa J, Riise E. Diagnostic evaluation of a nanobody with picomolar affinity toward the protease RgpB from Porphyromonas gingivalis. Anal Biochem 2011; 415:158-67. [PMID: 21569755 DOI: 10.1016/j.ab.2011.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/05/2011] [Accepted: 04/11/2011] [Indexed: 12/23/2022]
Abstract
Porphyromonas gingivalis is one of the major periodontitis-causing pathogens. P. gingivalis secretes a group of proteases termed gingipains, and in this study we have used the RgpB gingipain as a biomarker for P. gingivalis. We constructed a naive camel nanobody library and used phage display to select one nanobody toward RgpB with picomolar affinity. The nanobody was used in an inhibition assay for detection of RgpB in buffer as well as in saliva. The nanobody was highly specific for RgpB given that it did not bind to the homologous gingipain HRgpA. This indicated the presence of a binding epitope within the immunoglobulin-like domain of RgpB. A subtractive inhibition assay was used to demonstrate that the nanobody could bind native RgpB in the context of intact cells. The nanobody bound exclusively to the P. gingivalis membrane-bound RgpB isoform (mt-RgpB) and to secreted soluble RgpB. Further cross-reactivity studies with P. gingivalis gingipain deletion mutants showed that the nanobody could discriminate between native RgpB and native Kgp and RgpA in complex bacterial samples. This study demonstrates that RgpB can be used as a specific biomarker for P. gingivalis detection and that the presented nanobody-based assay could supplement existing methods for P. gingivalis detection.
Collapse
Affiliation(s)
- Peter Durand Skottrup
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|