1
|
Kobayashi T, Kobayashi H, Goto T, Takashima T, Oikawa M, Ikeda H, Terada R, Yoshida F, Sanbo M, Nakauchi H, Kurimoto K, Hirabayashi M. Germline development in rat revealed by visualization and deletion of Prdm14. Development 2020; 147:dev.183798. [PMID: 32001439 DOI: 10.1242/dev.183798] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/15/2020] [Indexed: 12/22/2022]
Abstract
Primordial germ cells (PGCs), the founder cells of the germline, are specified in pre-gastrulating embryos in mammals, and subsequently migrate towards gonads to mature into functional gametes. Here, we investigated PGC development in rats, by genetically modifying Prdm14, a unique marker and an essential PGC transcriptional regulator. We trace PGC development in rats, for the first time, from specification until the sex determination stage in fetal gonads using Prdm14 H2BVenus knock-in rats. We uncover that the crucial role of Prdm14 in PGC specification is conserved between rat and mice, by analyzing Prdm14-deficient rat embryos. Notably, loss of Prdm14 completely abrogates the PGC program, as demonstrated by failure of the maintenance and/or activation of germ cell markers and pluripotency genes. Finally, we profile the transcriptome of the post-implantation epiblast and all PGC stages in rat to reveal enrichment of distinct gene sets at each transition point, thereby providing an accurate transcriptional timeline for rat PGC development. Thus, the novel genetically modified rats and data sets obtained in this study will advance our knowledge on conserved versus species-specific features for germline development in mammals.
Collapse
Affiliation(s)
- Toshihiro Kobayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan.,Department of Physiological Sciences, The Graduate University of Advanced Studies, Okazaki, 444-8787 Aichi, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, 634-0813 Nara, Japan
| | - Teppei Goto
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Tomoya Takashima
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, 156-8502 Tokyo, Japan
| | - Mami Oikawa
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Hiroki Ikeda
- Department of Embryology, Nara Medical University, Kashihara, 634-0813 Nara, Japan
| | - Reiko Terada
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Fumika Yoshida
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Kashihara, 634-0813 Nara, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan .,Department of Physiological Sciences, The Graduate University of Advanced Studies, Okazaki, 444-8787 Aichi, Japan
| |
Collapse
|
2
|
Bryantsev AL, Cripps RM. Purification of cardiac cells from Drosophila embryos. Methods 2011; 56:44-9. [PMID: 22119843 DOI: 10.1016/j.ymeth.2011.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/07/2011] [Accepted: 11/11/2011] [Indexed: 11/28/2022] Open
Abstract
Recent genome-level innovations have enabled the identification of the entire cadre of genes that are expressed in specific tissues at particular developmental times. However, to be informative as to how individual cell types develop, this process relies upon the successful and efficient purification of cells for a particular tissue. Here, we describe a method to isolate cardiac cells from Drosophila embryos. We generated transgenic embryos in which a cardiac-specific enhancer of the Sulphonylurea receptor (Sur) gene drove expression of the green fluorescent protein (GFP) gene. Homogenized embryos were subjected to fluorescence activated cell sorting (FACS), resulting in approximately 50,000 cardiac cells purified. The prevalence of cardiac cells in the purified population was high, based upon a significant enrichment for cardiac-specific marker genes, including Sur and Toll. This enrichment also enabled the identification of cardiac-specific alternatively spliced isoforms of the Zasp66 gene. In the future, this approach can be used to describe the cardiac transcriptome of Drosophila at distinct stages of embryonic development.
Collapse
Affiliation(s)
- Anton L Bryantsev
- Department of Biology, University of New Mexico, Albuquerque, NM 87108, USA.
| | | |
Collapse
|