1
|
Giesel FL, Adeberg S, Syed M, Lindner T, Jiménez-Franco LD, Mavriopoulou E, Staudinger F, Tonndorf-Martini E, Regnery S, Rieken S, El Shafie R, Röhrich M, Flechsig P, Kluge A, Altmann A, Debus J, Haberkorn U, Kratochwil C. FAPI-74 PET/CT Using Either 18F-AlF or Cold-Kit 68Ga Labeling: Biodistribution, Radiation Dosimetry, and Tumor Delineation in Lung Cancer Patients. J Nucl Med 2020; 62:201-207. [PMID: 32591493 PMCID: PMC8679591 DOI: 10.2967/jnumed.120.245084] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
68Ga-fibroblast activation protein inhibitors (FAPIs) 2, 4, and 46 have already been proposed as promising PET tracers. However, the short half-life of 68Ga (68 min) creates problems with manufacture and delivery. 18F (half-life, 110 min) labeling would result in a more practical large-scale production, and a cold-kit formulation would improve the spontaneous availability. The NOTA chelator ligand FAPI-74 can be labeled with both 18F-AlF and 68Ga. Here, we describe the in vivo evaluation of 18F-FAPI-74 and a proof of mechanism for 68Ga-FAPI-74 labeled at ambient temperature. Methods: In 10 patients with lung cancer, PET scans were acquired at 10 min, 1 h, and 3 h after administration of 259 ± 26 MBq of 18F-FAPI-74. Physiologic biodistribution and tumor uptake were semiquantitatively evaluated on the basis of SUV at each time point. Absorbed doses were evaluated using OLINDA/EXM, version 1.1, and QDOSE dosimetry software with the dose calculator IDAC-Dose, version 2.1. Identical methods were used to evaluate one examination after injection of 263 MBq of 68Ga-FAPI-74. Results: The highest contrast was achieved in primary tumors, lymph nodes, and distant metastases at 1 h after injection, with an SUVmax of more than 10. The effective dose per a 100-MBq administered activity of 18F-FAPI-74 was 1.4 ± 0.2 mSv, and for 68Ga-FAPI-74 it was 1.6 mSv. Thus, the radiation burden of a diagnostic 18F-FAPI-74 PET scan is even lower than that of PET scans with 18F-FDG and other 18F tracers; 68Ga-FAPI-74 is comparable to other 68Ga ligands. FAPI PET/CT supported target volume definition for guiding radiotherapy. Conclusion: The high contrast and low radiation burden of FAPI-74 PET/CT favor multiple clinical applications. Centralized large-scale production of 18F-FAPI-74 or decentralized cold-kit labeling of 68Ga-FAPI-74 allows flexible routine use.
Collapse
Affiliation(s)
- Frederik L Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Adeberg
- Heidelberg Institute of Radiation Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Mustafa Syed
- Heidelberg Institute of Radiation Oncology, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Lindner
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Eleni Mavriopoulou
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Fabian Staudinger
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Eric Tonndorf-Martini
- Heidelberg Institute of Radiation Oncology, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Regnery
- Heidelberg Institute of Radiation Oncology, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Rieken
- Heidelberg Institute of Radiation Oncology, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Göttingen, Göttingen, Germany; and
| | - Rami El Shafie
- Heidelberg Institute of Radiation Oncology, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Manuel Röhrich
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Paul Flechsig
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Kluge
- ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft mbH, Dresden, Germany
| | - Annette Altmann
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Heidelberg Institute of Radiation Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany .,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci Rep 2013; 3:3529. [PMID: 24346241 PMCID: PMC3866632 DOI: 10.1038/srep03529] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/25/2013] [Indexed: 01/10/2023] Open
Abstract
Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the "gold standard". The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81-0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck.
Collapse
|
4
|
Niyazi M, Landrock S, Elsner A, Manapov F, Hacker M, Belka C, Ganswindt U. Automated biological target volume delineation for radiotherapy treatment planning using FDG-PET/CT. Radiat Oncol 2013; 8:180. [PMID: 23848981 PMCID: PMC3722117 DOI: 10.1186/1748-717x-8-180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND This study compared manually delineated gross tumour volume (GTV) and automatically generated biological tumour volume (BTV) based on fluoro-deoxy-glucose (FDG) positron emission tomography (PET)/CT to assess the robustness of predefined PET algorithms for radiotherapy (RT) planning in routine clinical practice. METHODS RT-planning data from 20 consecutive patients (lung- (40%), oesophageal- (25%), gynaecological- (25%) and colorectal (10%) cancer) who had undergone FDG-PET/CT planning between 08/2010 and 09/2011 were retrospectively analysed, five of them underwent neoadjuvant chemotherapy before radiotherapy. In addition to manual GTV contouring, automated segmentation algorithms were applied-among these 38%, 42%, 47% and 50% SUVmax as well as the PERCIST total lesion glycolysis (TLG) algorithm. Different ratios were calculated to assess the overlap of GTV and BTV including the conformity index and the ratio GTV included within the BTV. RESULTS Median age of the patients was 66 years and median tumour SUVmax 9.2. Median size of the GTVs defined by the radiation oncologist was 43.7 ml. Median conformity indices were between 30.0-37.8%. The highest amount of BTV within GTV was seen with the 38% SUVmax algorithm (49.0%), the lowest with 50% SUVmax (36.0%). Best agreement was obtained for oesophageal cancer patients with a conformity index of 56.4% and BTV within GTV ratio of 71.1%. CONCLUSIONS At present there is only low concordance between manually derived GTVs and automatically segmented FDG-PET/CT based BTVs indicating the need for further research in order to achieve higher volumetric conformity and therefore to get access to the full potential of FDG-PET/CT for optimization of radiotherapy planning.
Collapse
|