1
|
Zhao G, Cheng Q, Zhao Y, Wu F, Mu B, Gao J, Yang L, Yan J, Zhang H, Cui X, Chen Q, Lu F, Ao Q, Amdouni A, Jiang YQ, Yang B. The Abscisic Acid-Responsive Element Binding Factors (ABFs)-MAPKKK18 module regulates ABA- induced leaf senescence in Arabidopsis. J Biol Chem 2023; 299:103060. [PMID: 36841482 PMCID: PMC10166789 DOI: 10.1016/j.jbc.2023.103060] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
The Mitogen-Activated Protein Kinase Kinase Kinase 18 (MAPKKK18) has been reported to play a role in abiotic stress priming in long-term abscisic acid (ABA) response including drought tolerance and leaf senescence. However, the upstream transcriptional regulators of MAPKKK18 remain to be determined. Here, we report ABA-Responsive Element (ABRE) Binding Factors (ABFs) as upstream transcription factors (TFs) of MAPKKK18 expression. Mutants of abf2, abf3, abf4 and abf2abf3abf4 dramatically reduced the transcription of MAPKKK18. Our electrophoresis mobility shift assay (EMSA) and dual-luciferase reporter assay demonstrated that ABF2, ABF3, and ABF4 bound to ABRE cis-elements within the promoter of MAPKKK18 to transactivate its expression. Furthermore, enrichments of the promoter region of MAPKKK18 by ABF2, ABF3, and ABF4 were confirmed by in vivo chromatin immunoprecipitation coupled with qPCR (ChIP-qPCR). Additionally, we found that mutants of mapkkk18 exhibited obvious delayed leaf senescence. Moreover, a genetic study showed that overexpression of ABF2, ABF3, and ABF4 in the background of mapkkk18 mostly phenocopied the stay-green phenotype of mapkkk18 and, expression levels of five target genes of ABFs, that is, NYE1, NYE2, NYC1, PAO, and SAG29 were attenuated as a result of MAPKKK18 mutation. These findings demonstrate that ABF2, ABF3, and ABF4 act as transcription regulators of MAPKKK18, and also suggest that, at least in part, ABA acts in priming leaf senescence via ABF-induced expression of MAPKKK18.
Collapse
Affiliation(s)
- Guoying Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Qian Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Yuting Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Feifei Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Bangbang Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Jiping Gao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academic of Sciences, Shanghai, China
| | - Liu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Jingli Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Hanfeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Xing Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Qinqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Fangxiao Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Qianqian Ao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Asma Amdouni
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China.
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China.
| |
Collapse
|
2
|
Paul P, Joshi S, Tian R, Diogo Junior R, Chakrabarti M, Perry SE. The MADS-domain factor AGAMOUS-Like18 promotes somatic embryogenesis. PLANT PHYSIOLOGY 2022; 188:1617-1631. [PMID: 34850203 PMCID: PMC8896631 DOI: 10.1093/plphys/kiab553] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/29/2021] [Indexed: 05/08/2023]
Abstract
AGAMOUS-Like 18 (AGL18) is a MADS domain transcription factor (TF) that is structurally related to AGL15. Here we show that, like AGL15, AGL18 can promote somatic embryogenesis (SE) when ectopically expressed in Arabidopsis (Arabidopsis thaliana). Based on loss-of-function mutants, AGL15 and AGL18 have redundant functions in developmental processes such as SE. To understand the nature of this redundancy, we undertook a number of studies to look at the interaction between these factors. We studied the genome-wide direct targets of AGL18 to characterize its roles at the molecular level using chromatin immunoprecipitation (ChIP)-SEQ combined with RNA-SEQ. The results demonstrated that AGL18 binds to thousands of sites in the genome. Comparison of ChIP-SEQ data for AGL15 and AGL18 revealed substantial numbers of genes bound by both AGL15 and AGL18, but there were also differences. Gene ontology analysis revealed that target genes were enriched for seed, embryo, and reproductive development as well as hormone and stress responses. The results also demonstrated that AGL15 and AGL18 interact in a complex regulatory loop, where AGL15 inhibited transcript accumulation of AGL18, while AGL18 increased AGL15 transcript accumulation. Co-immunoprecipitation revealed an interaction between AGL18 and AGL15 in somatic embryo tissue. The binding and expression analyses revealed a complex crosstalk and interactions among embryo TFs and their target genes. In addition, our study also revealed that phosphorylation of AGL18 and AGL15 was crucial for the promotion of SE.
Collapse
Affiliation(s)
- Priyanka Paul
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | - Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | - Ran Tian
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | - Rubens Diogo Junior
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | - Manohar Chakrabarti
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | - Sharyn E Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312, USA
- Author for communication:
| |
Collapse
|
3
|
Brand LH, Henneges C, Schüssler A, Kolukisaoglu HÜ, Koch G, Wallmeroth N, Hecker A, Thurow K, Zell A, Harter K, Wanke D. Screening for protein-DNA interactions by automatable DNA-protein interaction ELISA. PLoS One 2013; 8:e75177. [PMID: 24146751 PMCID: PMC3795721 DOI: 10.1371/journal.pone.0075177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/12/2013] [Indexed: 12/22/2022] Open
Abstract
DNA-binding proteins (DBPs), such as transcription factors, constitute about 10% of the protein-coding genes in eukaryotic genomes and play pivotal roles in the regulation of chromatin structure and gene expression by binding to short stretches of DNA. Despite their number and importance, only for a minor portion of DBPs the binding sequence had been disclosed. Methods that allow the de novo identification of DNA-binding motifs of known DBPs, such as protein binding microarray technology or SELEX, are not yet suited for high-throughput and automation. To close this gap, we report an automatable DNA-protein-interaction (DPI)-ELISA screen of an optimized double-stranded DNA (dsDNA) probe library that allows the high-throughput identification of hexanucleotide DNA-binding motifs. In contrast to other methods, this DPI-ELISA screen can be performed manually or with standard laboratory automation. Furthermore, output evaluation does not require extensive computational analysis to derive a binding consensus. We could show that the DPI-ELISA screen disclosed the full spectrum of binding preferences for a given DBP. As an example, AtWRKY11 was used to demonstrate that the automated DPI-ELISA screen revealed the entire range of in vitro binding preferences. In addition, protein extracts of AtbZIP63 and the DNA-binding domain of AtWRKY33 were analyzed, which led to a refinement of their known DNA-binding consensi. Finally, we performed a DPI-ELISA screen to disclose the DNA-binding consensus of a yet uncharacterized putative DBP, AtTIFY1. A palindromic TGATCA-consensus was uncovered and we could show that the GATC-core is compulsory for AtTIFY1 binding. This specific interaction between AtTIFY1 and its DNA-binding motif was confirmed by in vivo plant one-hybrid assays in protoplasts. Thus, the value and applicability of the DPI-ELISA screen for de novo binding site identification of DBPs, also under automatized conditions, is a promising approach for a deeper understanding of gene regulation in any organism of choice.
Collapse
Affiliation(s)
- Luise H. Brand
- Plant Physiology, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, Germany
| | - Carsten Henneges
- Cognitive Systems, Center for Bioinformatics, University of Tuebingen, Tuebingen, Germany
| | - Axel Schüssler
- Cognitive Systems, Center for Bioinformatics, University of Tuebingen, Tuebingen, Germany
| | - H. Üner Kolukisaoglu
- Plant Physiology, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, Germany
- Center for Life Science Automation, Rostock, Germany
| | - Grit Koch
- Center for Life Science Automation, Rostock, Germany
| | - Niklas Wallmeroth
- Plant Physiology, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, Germany
| | - Andreas Hecker
- Plant Physiology, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, Germany
| | | | - Andreas Zell
- Cognitive Systems, Center for Bioinformatics, University of Tuebingen, Tuebingen, Germany
| | - Klaus Harter
- Plant Physiology, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, Germany
| | - Dierk Wanke
- Plant Physiology, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, Germany
- * E-mail:
| |
Collapse
|